Convex body
Appearance
In mathematics, a convex body in -dimensional Euclidean space is a compact convex set with non-empty interior.
A convex body is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point lies in if and only if its antipode, also lies in Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on
Important examples of convex bodies are the Euclidean ball, the hypercube and the cross-polytope.
See also
- List of convexity topics
- John ellipsoid – Ellipsoid most closely containing, or contained in, an n-dimensional convex object
References
- Gardner, Richard J. (2002). "The Brunn-Minkowski inequality". Bull. Amer. Math. Soc. (N.S.). 39 (3): 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2.