In computer science, a doubly-linked list is a linked data structure that consists of a set of sequentially linked records called nodes. Each node contains two fields, called links, that are references to the previous and to the next node in the sequence of nodes. The beginning and ending nodes' previous and next links, respectively, point to some kind of terminator, typically a sentinel node or null, to facilitate traversal of the list. If there is only one sentinel node, then the list is circularly linked via the sentinel node. It can be conceptualized as two singly linked lists formed from the same data items, but in opposite sequential orders.

A doubly-linked list whose nodes contain three fields: an integer value, the link to the next node, and the link to the previous node.

The two node links allow traversal of the list in either direction. While adding or removing a node in a doubly-linked list requires changing more links than the same operations on a singly linked list, the operations are simpler and potentially more efficient (for nodes other than first nodes) because there is no need to keep track of the previous node during traversal or no need to traverse the list to find the previous node, so that its link can be modified.

## Nomenclature and implementation

The first and last nodes of a doubly-linked list are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific data value. Any node of a doubly-linked list, once obtained, can be used to begin a new traversal of the list, in either direction (towards beginning or end), from the given node.

The link fields of a doubly-linked list node are often called next and previous or forward and backward. The references stored in the link fields are usually implemented as pointers, but (as in any linked data structure) they may also be address offsets or indices into an array where the nodes live.

## Basic algorithms

```record DoublyLinkedNode {
prev // A reference to the previous node
next // A reference to the next node
data // Data or a reference to data
}
```
```record DoublyLinkedList {
DoublyLinkedNode firstNode   // points to first node of list
DoublyLinkedNode lastNode    // points to last node of list
}
```

#### Traversing the list

Traversal of a doubly-linked list can be in either direction. In fact, the direction of traversal can change many times, if desired. Traversal is often called iteration, but that choice of terminology is unfortunate, for iteration has well-defined semantics (e.g., in mathematics) which are not analogous to traversal.

Forwards

```node  := list.firstNode
while node ≠ null
<do something with node.data>
node  := node.next
```

Backwards

```node  := list.lastNode
while node ≠ null
<do something with node.data>
node  := node.prev
```

#### Inserting a node

These symmetric functions insert a node either after or before a given node:

```function insertAfter(List list, Node node, Node newNode)
newNode.prev  := node
newNode.next  := node.next
if node.next == null
list.lastNode  := newNode
else
node.next.prev  := newNode
node.next  := newNode
```
```function insertBefore(List list, Node node, Node newNode)
newNode.prev  := node.prev
newNode.next  := node
if node.prev == null
list.firstNode  := newNode
else
node.prev.next  := newNode
node.prev  := newNode
```

We also need a function to insert a node at the beginning of a possibly empty list:

```function insertBeginning(List list, Node newNode)
if list.firstNode == null
list.firstNode  := newNode
list.lastNode   := newNode
newNode.prev  := null
newNode.next  := null
else
insertBefore(list, list.firstNode, newNode)
```

A symmetric function inserts at the end:

```function insertEnd(List list, Node newNode)
if list.lastNode == null
insertBeginning(list, newNode)
else
insertAfter(list, list.lastNode, newNode)
```

#### Removing a node

Removal of a node is easier than insertion, but requires special handling if the node to be removed is the firstNode or lastNode:

```function remove(Lis list, Node node)
if node.prev == null
list.firstNode  := node.next
else
node.prev.next  := node.next
if node.next == null
list.lastNode  := node.prev
else
node.next.prev  := node.prev

```

One subtle consequence of the above procedure is that deleting the last node of a list sets both firstNode and lastNode to null, and so it handles removing the last node from a one-element list correctly. Notice that we also don't need separate "removeBefore" or "removeAfter" methods, because in a doubly-linked list we can just use "remove(node.prev)" or "remove(node.next)" where these are valid. This also assumes that the node being removed is guaranteed to exist. If the node does not exist in this list, then some error handling would be required.

### Double linked list example program in C

This program illustrates the design of a double linked list that can expand in forward and reverse directions. Functionality for adding nodes in forward and reverse directions,searching and traversing nodes, deleting nodes, detecting cycle, reversing nodes, displaying nodes in forward and reverse directions is provided.

```/* Double linked list header file */

/* Codes for various errors */
#define NOERROR 0x0
#define MEMALLOCERROR 0x01
#define LISTEMPTY 0x03
#define NODENOTFOUND 0x4

{
int number;

/* Get data for each node */

/*  Add a new node forward */

/* Add a new node in the reverse direction */

/* Display nodes in forward direction */
extern void DisplayNodeForward(void);

/*Display nodes in reverse direction */
extern void DisplayNodeReverse(void);

/* Delete nodes in the DoubleLinkedList by searching for a node */
extern void DeleteNode(const int number);

/* Function to detect cycle in a Double Linked List */
extern unsigned int DetectCycleinList(void);

/*Function to reverse nodes */
extern void ReverseNodes(void);

/* function to display error message that DoubleLinkedList is empty */
void ErrorMessage(const int Error);

#endif
```
```/* Double linked list functions */
/*****************************************************
version: 0.1
These functions provide functionality of a double
Bug and version history:
0.1 Initial version

******************************************************/
#include "stdlib.h"
#include "stdio.h"

/* Variable for storing error status */
unsigned int Error = NOERROR;

{
if(!(pNode))
{
Error = MEMALLOCERROR;
return NULL;
}
else
{
printf("\nEnter a number: ");
scanf("%d",&pNode->number);
return pNode;
}
}

/*Function to add a node forward.
Arguments: None, returns: nothing */

{
pNode = GetNodeData(pNode);
if(pNode)
{
{
pNode->pNext= NULL;
pNode->pPrevious= NULL;
}
else
{
while(pCurrent->pNext!=NULL)
{
pCurrent=pCurrent->pNext;
}
pCurrent->pNext= pNode;
pNode->pNext= NULL;
pNode->pPrevious= pCurrent;
}
}
else
{
Error = MEMALLOCERROR;
}
}

/* Function to add nodes in reverse direction,
arguments: None
returns :  Nothing
*/
{
pNode = GetNodeData(pNode);
if(pNode)
{
{
pNode->pPrevious= NULL;
pNode->pNext= NULL;
}
else
{
while(pCurrent->pPrevious != NULL )
{
pCurrent=pCurrent->pPrevious;
}
pNode->pPrevious= NULL;
pNode->pNext= pCurrent;
pCurrent->pPrevious= pNode;
}
}
else
{
Error = MEMALLOCERROR;
}
}

void DisplayNodeForward(void)
{
if (pCurrent)
{
while(pCurrent != NULL )
{
printf("\nNumber in forward direction is %d ",pCurrent->number);
pCurrent=pCurrent->pNext;
}
}
else
{
Error = LISTEMPTY;
ErrorMessage(Error);
}
}

/* Display Double linked list data in Reverse direction  */
void DisplayNodeReverse(void)
{
if (pCurrent)
{
while(pCurrent->pNext != NULL)
{
pCurrent=pCurrent->pNext;
}
while(pCurrent)
{
printf("\nNumber in Reverse direction is %d ",pCurrent->number);
pCurrent=pCurrent->pPrevious;
}
}
else
{
Error = LISTEMPTY;
ErrorMessage(Error);
}

}

/* Delete nodes in a double linked list */
/* Functionality for deleting memory allocated to be added */
void DeleteNode(const int SearchNumber)
{
unsigned int Nodefound = FALSE;
if (pCurrent != NULL)
{

if (pNextNode != NULL)
{
while((pNextNode != NULL) && (Nodefound==FALSE))
{
{
Nodefound =TRUE;
}

/* if the search entry is somewhere in the DoubleLinkedList or at the end */
else if(pNextNode->number == SearchNumber)
{
Nodefound = TRUE;
pTemp = pNextNode->pNext;
pCurrent->pNext = pTemp;
/* if the node to be deleted is not NULL,,,
then point pNextnode->pNext to the previous node
which is pCurrent */
if(pTemp)
{
pTemp->pPrevious= pCurrent;
}

}

/* iterate throught the Double Linked List until next node is NULL  */
pNextNode=pNextNode->pNext;
pCurrent=pCurrent->pNext;
}

}
else if (pCurrent->number == SearchNumber)
{
Nodefound = TRUE;
pCurrent= NULL;
}

}
else if (pCurrent == NULL)
{
Error= LISTEMPTY;
ErrorMessage(Error);
}
if (Nodefound == FALSE && pCurrent!= NULL)
{
Error = NODENOTFOUND;
ErrorMessage(Error);
}

}

/* Function to detect cycle in double linked List */
unsigned int DetectCycleinList(void)
{
unsigned int cycle = FALSE;
while( (cycle==FALSE) && pCurrent->pNext != NULL)
{
if(!(pFast = pFast->pNext))
{
cycle= FALSE;
break;
}
else if (pFast == pCurrent)
{
cycle = TRUE;
break;
}
else if (!(pFast = pFast->pNext))
{
cycle = FALSE;
break;

}
else if(pFast == pCurrent)
{
cycle = TRUE;
break;

}
pCurrent=pCurrent->pNext;
}
if(cycle)
{
}
else
{
printf("\nDouble linked list is not cyclic");
}
return cycle;
}

void ReverseNodes(void)
{
if (pCurrent)
{
while (pCurrent != NULL)
{
pNextNode = pCurrent->pNext;
pCurrent->pPrevious=pNextNode;
pCurrent = pNextNode;
}
}
else
{
Error= LISTEMPTY;
ErrorMessage(Error);
}
}

/* Function to display varous errors */
void ErrorMessage(const int Error)
{
switch(Error)
{
case LISTEMPTY:
printf("\nError: Double linked list is empty!");
break;

case MEMALLOCERROR:
printf("\nMemory allocation error ");
break;

case NODENOTFOUND:
break;

default:
printf("\nError code missing");
break;
}
}
```

```/* main.h header file */
#ifndef MAIN_H
#define MAIN_H

/* Error code */
extern unsigned int Error;

#endif
```

```/***************************************************
Name: main.c
version: 0.1
Description:  Implementation of a double linked List

Bug and version history:
0.1 Initial version
****************************************************/

#include <stdio.h>
#include <stdlib.h>
#include "main.h"

int main(void)
{
unsigned int choice =0;
int InputNumber=0;
printf("\nThis program creates a double linked list");
printf("\nYou can add nodes in forward and reverse directions");
do
{
printf("\n1.Create Node Forward");
printf("\n2.Create Node Reverse");
printf("\n3.Delete Node");
printf("\n4.Display Nodes in forward direction");
printf("\n5.Display Nodes in reverse direction");
printf("\n6.Reverse nodes\n");
printf("\n7.Exit\n");
scanf("%d",&choice);
switch(choice)
{
case 1:
break;

case 2:
break;

case 3:
printf("\nEnter the node you want to delete: ");
scanf("%d",&InputNumber);
DeleteNode(InputNumber);
break;

case 4:
printf("\nDisplaying node data in forward direction \n");
DisplayNodeForward();
break;

case 5:
printf("\nDisplaying node data in reverse direction\n");
DisplayNodeReverse();
break;

case 6:
ReverseNodes();
break;

case 7:
break;

default:
printf("\nIncorrect choice");
}

} while (choice !=7);
return 0;
}
```

#### Traversing the list

Assuming that someNode is some node in a non-empty list, this code traverses through that list starting with someNode (any node will do):

Forwards

```node  := someNode
do
do something with node.value
node  := node.next
while node ≠ someNode
```

Backwards

```node  := someNode
do
do something with node.value
node  := node.prev
while node ≠ someNode
```

//NODEPA Notice the postponing of the test to the end of the loop. This is important for the case where the list contains only the single node someNode.

#### Inserting a node

This simple function inserts a node into a doubly-linked circularly linked list after a given element:

```function insertAfter(Node node, Node newNode)
newNode.next  := node.next
newNode.prev  := node
node.next.prev  := newNode
node.next       := newNode
```

To do an "insertBefore", we can simply "insertAfter(node.prev, newNode)".

Inserting an element in a possibly empty list requires a special function:

```function insertEnd(List list, Node node)
if list.lastNode == null
node.prev := node
node.next := node
else
insertAfter(list.lastNode, node)
list.lastNode := node
```

To insert at the beginning we simply "insertAfter(list.lastNode, node)".

Finally, removing a node must deal with the case where the list empties:

```function remove(List list, Node node)
if node.next == node
list.lastNode := null
else
node.next.prev := node.prev
node.prev.next := node.next
if node == list.lastNode
list.lastNode := node.prev;
destroy node
```

An asymmetric doubly-linked list is somewhere between the singly-linked list and the regular doubly-linked list. It shares some features with the singly linked list (single-direction traversal) and others from the doubly-linked list (ease of modification)

It is a list where each node's previous link points not to the previous node, but to the link to itself. While this makes little difference between nodes (it just points to an offset within the previous node), it changes the head of the list: It allows the first node to modify the firstNode link easily.[1][2]

As long as a node is in a list, its previous link is never null.

#### Inserting a node

To insert a node before another, we change the link that pointed to the old node, using the prev link; then set the new node's next link to point to the old node, and change that node's prev link accordingly.

```function insertBefore(Node node, Node newNode)
if node.prev == null
error "The node is not in a list"
newNode.prev  := node.prev
newNode.next  := node
```
```function insertAfter(Node node, Node newNode)
newNode.next  := node.next
if newNode.next != null
node.next  := newNode
```

#### Deleting a node

To remove a node, we simply modify the link pointed by prev, regardless of whether the node was the first one of the list.

```function remove(Node node)