Ericson fluctuations

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 09:37, 6 November 2022 (Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 3326/3850). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Ericson fluctuations constitute one of the most characteristic features of quantum chaotic scattering in the regime of strongly overlapping resonances such as a compound nucleus.[1][2][3] These fluctuations were predicted in 1960 by Torleif Ericson in two seminal articles,[4][5][6][7] further developed in 1963,[8] based on the same statistical assumptions as those used by E. Wigner, C. E. Porter and R. G. Thomas to describe generic properties of resonances in long-lived compound nuclear systems.[9][10][11] In the present case the fluctuations occur in the "continuum" regime for which a large number of such resonances overlap coherently, owing to the short lifetime of the compound nucleus. At the time it was believed that this would lead to a structure-less behavior. Ericson realized that the opposite was the case with strong, random fluctuations.[12][7]

The Ericson fluctuations were first observed in 1964 by P. Von Brentano et al.[13] in nuclear physics giving rise to a vigorous theoretical and experimental programme.[3] They have the curious feature of being both reproducible and random at the same time.[14] The fluctuations are universal and have later been observed in many other areas such as photoionization of hydrogen, uni-molecular dissociation (physical chemistry),[15] perturbed atomic and molecular systems and micro wave billiards.[3][16][17]

Present theoretical descriptions of chaotic quantum scattering confirm the predicted properties of the Ericson fluctuations.[9] The universality of the Ericson fluctuations are thus very well established.[3]

References

  1. ^ Borisenko, Victor E.; Ossicini, Stefano (2013). What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. John Wiley & Sons. ISBN 978-3-527-64838-2.
  2. ^ ""Compound-nucleus model". Encyclopedia Britannica". www.britannica.com. Retrieved 2021-11-16.{{cite web}}: CS1 maint: url-status (link)
  3. ^ a b c d Mitchell, G. E.; Richter, A.; Weidenmüller, H. A. (2010). "Random matrices and chaos in nuclear physics: Nuclear reactions". Reviews of Modern Physics. 82 (4): 2845–2901. arXiv:1001.2422. Bibcode:2010RvMP...82.2845M. doi:10.1103/RevModPhys.82.2845. ISSN 0034-6861. S2CID 118607709.
  4. ^ Ericson, Torleif (1960). "Fluctuations of Nuclear Cross Sections in the "Continuum" Region". Physical Review Letters. 5 (9): 430–431. Bibcode:1960PhRvL...5..430E. doi:10.1103/PhysRevLett.5.430. ISSN 0031-9007.
  5. ^ Stroke, H. Henry (1999). The Physical Review: The first hundred years. Springer Science & Business Media. p. 249. ISBN 978-1-56396-188-5.
  6. ^ Ericson, Torleif (1960). "The statistical model and nuclear level densities". Advances in Physics. 9 (36): 425–511. Bibcode:1960AdPhy...9..425E. doi:10.1080/00018736000101239. ISSN 0001-8732.
  7. ^ a b "This week's citation classic" (PDF). garfield.library.upenn.edu. Retrieved 2021-11-16.{{cite web}}: CS1 maint: url-status (link)
  8. ^ Ericson, Torleif (1963). "A theory of fluctuations in nuclear cross sections". Annals of Physics. 23 (3): 390–414. Bibcode:1963AnPhy..23..390E. doi:10.1016/0003-4916(63)90261-6.
  9. ^ a b Weidenmüller, H. A.; Mitchell, G. E. (2009). "Random matrices and chaos in nuclear physics: Nuclear structure". Reviews of Modern Physics. 81 (2): 539–589. arXiv:0807.1070. Bibcode:2009RvMP...81..539W. doi:10.1103/RevModPhys.81.539. ISSN 0034-6861. S2CID 16847809.
  10. ^ Porter, C. E.; Thomas, R. G. (1956). "Fluctuations of Nuclear Reaction Widths". Physical Review. 104 (2): 483–491. Bibcode:1956PhRv..104..483P. doi:10.1103/PhysRev.104.483. ISSN 0031-899X.
  11. ^ Ericson, T; Mayer-Kuckuk, T (1966). "Fluctuations in Nuclear Reactions". Annual Review of Nuclear Science. 16 (1): 183–206. Bibcode:1966ARNPS..16..183E. doi:10.1146/annurev.ns.16.120166.001151. ISSN 0066-4243. PMID 5334731.
  12. ^ Blatt, John M.; Weisskopf, Victor F. (1979). Theoretical Nuclear Physics. New York, NY: Springer New York. doi:10.1007/978-1-4612-9959-2. ISBN 978-1-4612-9961-5.
  13. ^ Von Brentano, P.; Ernst, J.; Häusser, O.; Mayer-Kuckuk, T.; Richter, A.; Von Witsch, W. (1964). "Statistical fluctuations in the cross sections of the reactions Cl35 (p, α)S32 and Cl37 (p, α)S34". Physics Letters. 9 (1): 48–51. Bibcode:1964PhL.....9...48V. doi:10.1016/0031-9163(64)90210-0. ISSN 0031-9163.
  14. ^ Weidenmüller, Hans A. (1990). "Ericson fluctuations versus conductance fluctuations". Nuclear Physics A. 518 (1–2): 1–12. doi:10.1016/0375-9474(90)90531-P.
  15. ^ Reid, Scott; Reisler, Hanna (1996). "Unimolecular Reaction of NO2: Overlapping Resonances, Fluctuations, and the Transition State". Journal of Chemical Physics. 100 (2): 474-487. doi:10.1021/jp952843w.
  16. ^ Guhr, Thomas; Müller–Groeling, Axel; Weidenmüller, Hans A. (1998). "Random-matrix theories in quantum physics: common concepts". Physics Reports. 299 (4–6): 189–425. arXiv:cond-mat/9707301. Bibcode:1998PhR...299..189G. doi:10.1016/S0370-1573(97)00088-4. S2CID 119052579.
  17. ^ Stöckmann, Hans-Jürgen (2010). "Microwave billiards and quantum chaos". Scholarpedia. 5 (10): 10243. Bibcode:2010SchpJ...510243S. doi:10.4249/scholarpedia.10243. ISSN 1941-6016.{{cite journal}}: CS1 maint: date and year (link)