High-entropy-alloy nanoparticles

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by John P. Sadowski (NIOSH) (talk | contribs) at 03:51, 12 October 2022 (removed Category:Nanoparticles; added Category:Nanoparticles by composition using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

High-entropy-alloy nanoparticles (HEA-NPs) are nanoparticles having four or more elements alloyed in a single-phase solid solution structure.[1] HEA-NPs possess a wide range of compositional library, distinct alloy mixing structure, and nanoscale size effect, giving them huge potential in catalysis, energy, environmental, and biomedical applications.

Enabling synthesis

HEA-NPs are a structural analog to bulk high-entropy alloys (HEAs),[2][3] but synthesized at the nanoscale. The formation of HEAs requires high temperature for multi-element mixing; however, high temperature acts against nano-material synthesis due to high-temperature-induced structure aggregation and surface reconstruction.

In 2018, HEA-NPs were firstly synthesized by a carbothermal shock synthesis.[1] The carbothermal shock employs a rapid high-temperature heating (e.g. 2000 K, in 55 ms) to enable the non-equilibrium synthesis of HEA-NPs with uniform size and homogeneous mixing despite containing immiscible combinations. The material and technology are also patented.[4][5] Later, other similar non-equilibrium "shock" methods were also introduced to synthesize HEA-NPs and other types of high entropy nanostructures.[6][7][8]

Properties and applications

HEA-NPs have a large compositional library, which enables tunability in chemical composition, structure, and associated properties. In addition, owing to the high entropy structure, HEA-NPs typically show improved structural stability. With the above merits, HEA-NPs have been used as high-performance catalysts for both thermochemical and electrochemical reactions, such as ammonia oxidation, decomposition, and water splitting.[1][9][10][11] High throughput and data mining approaches toward accelerated material discovery in the multi-dimensional space on HEA-NPs.[12][13]

References

  1. ^ a b c Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei (2018-03-30). "Carbothermal shock synthesis of high-entropy-alloy nanoparticles". Science. 359 (6383): 1489–1494. Bibcode:2018Sci...359.1489Y. doi:10.1126/science.aan5412. ISSN 0036-8075. PMID 29599236.
  2. ^ Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. (2004). "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes". Advanced Engineering Materials. 6 (5): 299–303. doi:10.1002/adem.200300567. ISSN 1527-2648. S2CID 137380231.
  3. ^ Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. (2004-07-01). "Microstructural development in equiatomic multicomponent alloys". Materials Science and Engineering: A. 375–377: 213–218. doi:10.1016/j.msea.2003.10.257. ISSN 0921-5093.
  4. ^ US 2019161840, Yao, Yonggang & Hu, Liangbing, "Thermal shock synthesis of multielement nanoparticles", published 2019-05-30, assigned to University of Maryland 
  5. ^ US 2018369771, Hu, Liangbing; Chen, Yanan & Yao, Yonggang, "Nanoparticles and Systems and Methods for Synthesizing Nanoparticles Through Thermal Shock", published 2018-12-27, assigned to University of Maryland 
  6. ^ Yang, Yong; Song, Boao; Ke, Xiang; Xu, Feiyu; Bozhilov, Krassimir N.; Hu, Liangbing; Shahbazian-Yassar, Reza; Zachariah, Michael R. (2020-03-03). "Aerosol Synthesis of High Entropy Alloy Nanoparticles". Langmuir. 36 (8): 1985–1992. doi:10.1021/acs.langmuir.9b03392. ISSN 0743-7463. PMID 32045255. S2CID 211087047.
  7. ^ Glasscott, Matthew W.; Pendergast, Andrew D.; Goines, Sondrica; Bishop, Anthony R.; Hoang, Andy T.; Renault, Christophe; Dick, Jeffrey E. (2019-06-14). "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis". Nature Communications. 10 (1): 2650. Bibcode:2019NatCo..10.2650G. doi:10.1038/s41467-019-10303-z. ISSN 2041-1723. PMC 6570760. PMID 31201304.
  8. ^ Chen, Hao; Lin, Wenwen; Zhang, Zihao; Jie, Kecheng; Mullins, David R.; Sang, Xiahan; Yang, Shi-Ze; Jafta, Charl J.; Bridges, Craig A.; Hu, Xiaobing; Unocic, Raymond R. (2019-07-01). "Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization". ACS Materials Letters. 1 (1): 83–88. doi:10.1021/acsmaterialslett.9b00064. S2CID 181600242.
  9. ^ Xie, Pengfei; Yao, Yonggang; Huang, Zhennan; Liu, Zhenyu; Zhang, Junlei; Li, Tangyuan; Wang, Guofeng; Shahbazian-Yassar, Reza; Hu, Liangbing; Wang, Chao (2019-09-05). "Highly efficient decomposition of ammonia using high-entropy alloy catalysts". Nature Communications. 10 (1): 4011. Bibcode:2019NatCo..10.4011X. doi:10.1038/s41467-019-11848-9. ISSN 2041-1723. PMC 6728353. PMID 31488814.
  10. ^ Yang, Chunpeng; Yao, Yonggang; He, Shuaiming; Xie, Hua; Hitz, Emily; Hu, Liangbing (2017). "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode". Advanced Materials. 29 (38): 1702714. doi:10.1002/adma.201702714. ISSN 1521-4095. PMID 28833607. S2CID 205281575.
  11. ^ Gao, Shaojie; Hao, Shaoyun; Huang, Zhennan; Yuan, Yifei; Han, Song; Lei, Lecheng; Zhang, Xingwang; Shahbazian-Yassar, Reza; Lu, Jun (2020-04-24). "Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis". Nature Communications. 11 (1): 2016. Bibcode:2020NatCo..11.2016G. doi:10.1038/s41467-020-15934-1. ISSN 2041-1723. PMC 7181682. PMID 32332743.
  12. ^ Yao, Yonggang; Liu, Zhenyu; Xie, Pengfei; Huang, Zhennan; Li, Tangyuan; Morris, David; Finfrock, Zou; Zhou, Jihan; Jiao, Miaolun; Gao, Jinlong; Mao, Yimin (2020). "Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts". Science Advances. 6 (11): eaaz0510. Bibcode:2020SciA....6..510Y. doi:10.1126/sciadv.aaz0510. ISSN 2375-2548. PMC 7069714. PMID 32201728.
  13. ^ Yao, Yonggang; Huang, Zhennan; Li, Tangyuan; Wang, Hang; Liu, Yifan; Stein, Helge S.; Mao, Yimin; Gao, Jinlong; Jiao, Miaolun; Dong, Qi; Dai, Jiaqi (2020-03-24). "High-throughput, combinatorial synthesis of multimetallic nanoclusters". Proceedings of the National Academy of Sciences. 117 (12): 6316–6322. Bibcode:2020PNAS..117.6316Y. doi:10.1073/pnas.1903721117. ISSN 0027-8424. PMC 7104385. PMID 32156723.

See also