Hobby–Eberly Telescope

From Wikipedia, the free encyclopedia
  (Redirected from Hobby-Eberly Telescope)
Jump to: navigation, search
Hobby–Eberly Telescope
A silver geodesic dome against a blue sky, with flags in the foreground.
Hobby–Eberly Telescope at McDonald Observatory October 28, 2006
Organization McDonald Observatory
Location Mount Fowlkes, Davis Mountains, West Texas
Coordinates 30°40′53.2″N 104°00′53.0″W / 30.681444°N 104.014722°W / 30.681444; -104.014722Coordinates: 30°40′53.2″N 104°00′53.0″W / 30.681444°N 104.014722°W / 30.681444; -104.014722
Altitude 2,026 m (6,647 ft)
Wavelength 350–1800 nm (visible)
Built 1994–1997
First light 10–11 December 1996
Telescope style Prime focus, segmented
Diameter 9.2 m
Secondary dia. 1 m (corrector)[1]
Tertiary dia. 1 m (corrector)[1]
Angular resolution ≈1.5″ FWHM
Collecting area 77.6 m² (total)
64.2 m² (effective)[citation needed]
Focal length 13.08 m
Mounting Fixed primary, Arecibo style
(The telescope can rotate in azimuth, but not during observations.)
Website http://www.as.utexas.edu/mcdonald/het/het.html
Comparison of nominal sizes of primary mirrors of the Hobby–Eberly Telescope and some notable optical telescopes (click for detail)

The Hobby–Eberly Telescope is a 9.2-meter (30-foot) aperture telescope located at the McDonald Observatory. It combines a number of features that differentiate it from most telescope designs, resulting in greatly lowered construction costs. For instance, the primary mirror is constructed from 91 hexagonal elements, which is less expensive than manufacturing a single large primary. Furthermore the telescope's main mirror is fixed at an 55 degrees angle and can rotate around its base. A target is tracked by moving the instruments at the focus of the telescope; this allows access to about 70–81% of the sky at its location and a single target can be tracked for up to two hours.[2][3] The telescope is named for former Texas Lieutenant-Governor Bill Hobby and for Robert E. Eberly, a Penn State benefactor.

Three instruments are available to analyze the light from the targets. All three instruments are spectrographs. The instruments work at high, medium and low spectral resolution. The low-resolution spectrograph is housed at the prime focus, while the medium and high-resolution spectrographs reside in the basement and the light is fed into them via a fiber-optic cable.

Since achieving first light in 1996, the telescope has been used for a wide variety of studies ranging from our Solar System to stars in our galaxy and studies of other galaxies. The telescope has been used successfully to find planets orbiting around other stars by measuring radial velocities as precisely as 1 m/s. Using the low-resolution spectrograph, the telescope has been used to identify Type Ia supernovae to measure the acceleration of the universe. The telescope has also been used to measure the rotation of individual galaxies. The telescope was upgraded for use in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), which will provide the first observations to allow narrowing of the list of possible explanations for dark energy.[2][4]

The Hobby–Eberly Telescope is operated by The University of Texas McDonald Observatory for a consortium of institutions which includes The University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig Maximilians University of Munich, and Georg August University of Göttingen.[2]

The physical main reflector mirror is larger than 9.2 meters; it is actually about 11 m by 9.8 m. However, the usable optical aperture at any given time is 9.2 m. The mirror itself is composed of 91 hexagonal segments, a segmented mirror design like the Keck telescopes. Updates to the telescope increased its field of view from 4 arcminutes to 22 arcminutes[1][2] (a full moon is 30 arcminutes for comparison). The telescope mirrors are aligned within a fraction of a wavelength of visible light by actuators under each segment.[3] The tower next to the telescope, called the Center of Curvature Alignment Sensor Tower (CCAS), is used to calibrate the mirror segments.[3] One of the advantages of this type, is that it was over 5 times more cost efficient for its aperture than a more traditional design.[3]

As reported in Nature of 28 November 2012, astronomers have used the Hobby–Eberly Telescope to measure the mass of extraordinarily large black hole (with mass approximates 17 billion Suns), possibly the largest black hole found so far. It has been found in the compact, lenticular galaxy NGC 1277, lies 220 million light-years away in the constellation Perseus. The black hole has approximately 59 percent of the mass of the bulge of this spiral galaxy (14 percent of the total stellar mass of the galaxy).[5][6]

References[edit]

  1. ^ a b c John A. Booth; Karl Gebhardt; John M. Good; Gary J. Hill; Phillip J. MacQueen; Marc D. Rafal; Michael P. Smith; Brian L. Vattiat (2008-07-27), "Current Status of the Hobby–Eberly Telescope Wide Field Upgrade and VIRUS", in Stepp, Larry M.; Gilmozzi, Roberto, Ground-based and Airborne Telescopes II., Proceedings of the SPIE 012: 70120B–70120B–12, doi:10.1117/12.789360 
  2. ^ a b c d "Hobby–Eberly Telescope Upgrade / Going Deep". McDonald Observatory. Retrieved 2012-08-26. 
  3. ^ a b c d "Hobby–Eberly Telescope – General Information". Astronomy Program, University of Texas at Austin. Retrieved 2012-08-26. 
  4. ^ "HETDEX: Leading the Revolution". McDonald Observatory. Retrieved 2012-08-26. 
  5. ^ Ron Cowen, Small galaxy harbours super-hefty black hole, Nature News, 28 November 2012
  6. ^ Remco C. E. van den Bosch, Karl Gebhardt, Kayhan Gültekin, Glenn van de Ven, Arjen van der Wel, Jonelle L. Walsh, An over-massive black hole in the compact lenticular galaxy NGC 1277, Nature 491, pp. 729–731 (29 November 2012) doi:10.1038/nature11592, published online 28 November 2012

External links[edit]

See also[edit]