Jump to content

Hyper-finite field

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by JJMC89 bot III (talk | contribs) at 07:30, 25 June 2020 (Moving Category:Field theory to Category:Field (mathematics) per Wikipedia:Categories for discussion/Speedy). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a hyper-finite field is an uncountable field similar in many ways to finite fields. More precisely a field F is called hyper-finite if it is uncountable and quasi-finite, and for every subfield E, every absolutely entire E-algebra (regular field extension of E) of smaller cardinality than F can be embedded in F. They were introduced by Ax (1968). Every hyper-finite field is a pseudo-finite field, and is in particular a model for the first-order theory of finite fields.

References

[edit]
  • Ax, James (1968), "The Elementary Theory of Finite Fields", Annals of Mathematics, Second Series, 88 (2), Annals of Mathematics: 239–271, doi:10.2307/1970573, ISSN 0003-486X, JSTOR 1970573, MR 0229613, Zbl 0195.05701