Pinna (anatomy)

From Wikipedia, the free encyclopedia
  (Redirected from Pinnae)
Jump to: navigation, search
This article is about the animal structure. For the plant structure, see Frond.
Pinna
Gray904.png
The auricula. Lateral surface.
Latin auricula
Gray's p.1034
Artery posterior auricular, anterior auricular
Nerve Trigeminal nerve, Great auricular nerve, Lesser occipital nerve
Lymph To Pre & Post Auricular Nodes, Nodes of Parotid and Cervical Chains

In animal anatomy, the pinna (Latin for wing or fin, plural pinnae), auricle or auricula, is the visible part of the ear that resides outside of the head.

Structure[edit]

The diagram shows the shape and location of most these components:

  • Anthelix (antihelix) forms a 'Y' shape where the upper parts are:
    • Superior crus (to the left of the fossa triangularis in the diagram)
    • Inferior crus (to the right of the fossa triangularis in the diagram)
  • Antitragus is below the tragus
  • Aperture is the entrance to the ear canal
  • Auricular sulcus is the depression behind the ear next to the head
  • Concha is the hollow next to the ear canal
  • Conchal angle is the angle that the back of the concha makes with the side of the head
  • Crus of the helix is just above the tragus
  • Cymba conchae is the narrowest end of the concha
  • External auditory meatus is the ear canal
  • Fossa triangularis is the depression in the fork of the antihelix
  • Helix is the folded over outside edge of the ear
  • Incisura anterior auris, or intertragic incisure, or intertragal notch, is the space between the tragus and antitragus
  • Lobe (lobule) - attached or free according to a classic single-gene dominance relationship
  • Scapha
  • Tragus

Development[edit]

The developing pinna is first noticeable around the sixth week of gestation in the human fetus, developing from six rounded protuberances (the six hillocks of Hiss), which are derived from the first and second branchial arches. These hillocks develop into the folds of the pinna and gradually shift upwards and backwards to their final position on the head. En route accessory auricles (also known as preauricular tags) may be left behind. The first three hillocks are derived from the 1st branchial arch and form the tragus, crus of the helix, and helix, respectively. Cutaneous sensation to these areas is via the trigeminal nerve, the attendant nerve of the 1st branchial arch. The final three hillocks are derived from the second branchial arch and form the antihelix, antitragus, and lobule, respectively. These portions of the ear are supplied by the cervical plexus and a small portion by the facial nerve. This explains why vesicles are classically seen on the pinna in herpes infections of the facial nerve (Ramsay Hunt syndrome type II).

Function[edit]

To an impala, the pinna is useful in collecting sound

The function of the pinna is to collect sound, and perform spectral transformations to incoming sounds which enable the process of vertical localization to take place.[1] It collects sound by acting as a funnel, amplifying the sound and directing it to the auditory canal. While reflecting from the pinna, sound also goes through a filtering process, as well as frequency dependent amplitude modulation which adds directional information to the sound (see sound localization, vertical sound localization, head-related transfer function, pinna notch). The filtering effect of the human pinna preferentially selects sounds in the frequency range of human speech. In various species, the pinna can also signal mood and radiate heat.

Amplification[edit]

The fennec fox uses its distinctive oversized pinnae to radiate excess heat and to amplify the sound of small prey burrowing under the desert sand

Amplification of sound by the pinna, tympanic membrane and middle ear causes an increase in level of about 10 to 15 dB in a frequency range of 1.5 kHz to 7 kHz. This amplification is an important factor in inner ear trauma resulting from elevated sound levels.

Notch of pinna[edit]

Due to its anatomy, the pinna largely eliminates a small segment of the frequency spectrum; this band is called the pinna notch. The pinna works differently for low and high frequency sounds. For low frequencies, it behaves similarly to a reflector dish, directing sounds toward the ear canal. For high frequencies, however, its value is thought to be more sophisticated. While some of the sounds that enter the ear travel directly to the canal, others reflect off the contours of the pinna first: these enter the ear canal after a very slight delay. This delay causes phase cancellation, virtually eliminating the frequency component whose wave period is twice the delay period. Neighboring frequencies also drop significantly. In the affected frequency band – the pinna notch – the pinna creates a band-stop or notch filtering effect.

Clinical significance[edit]

There are various visible ear abnormalities:

Additional images[edit]

See also[edit]

This article uses anatomical terminology; for an overview, see anatomical terminology.

References[edit]

  1. ^ http://www.annualreviews.org/doi/pdf/10.1146/annurev.ps.42.020191.001031
  2. ^ a b c d Ear Deformities. Division of Plastic and Reconstructive Surgery. University of North Carolina at Chapel Hill School of Medicine.
  3. ^ a b c d e f g h i j k l Hawke, M. Chapter 1: Diseases of the Pinna. Ear Disease: A Clinical Guide. Hamilton, Ontario. Decker DTC. 2003.
  4. ^ a b c d Pinna abnormalities and low-set ears. MedlinePlus.
  5. ^ a b Neonatal Dermatology: Ear Anomalies. Auckland District Health Board.

External links[edit]