Sinkhorn's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BG19bot (talk | contribs) at 06:17, 22 January 2015 (WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (10768)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Sinkhorn's theorem states that every square matrix with positive entries can be written in a certain standard form.

Theorem

If A is an n × n matrix with strictly positive elements, then there exist diagonal matrices D1 and D2 with strictly positive diagonal elements such that D1AD2 is doubly stochastic. The matrices D1 and D2 are unique modulo multiplying the first matrix by a positive number and dividing the second one by the same number. [1] [2]

Sinkhorn-Knopp algorithm

A simple iterative method to approach the double stochastic matrix is to alternately rescale all rows and all columns of A to sum to 1. Sinkhorn and Knopp presented this algorithm and analyzed its convergence. [3]

Analogues

The following analogue for unitary matrices is also true: for every unitary matrix U there exist two diagonal unitary matrices L and R such that LUR has each of its columns and rows summing to 1.[4]

References

  1. ^ Sinkhorn, Richard. (1964). "A relationship between arbitrary positive matrices and doubly stochastic matrices." Ann. Math. Statist. 35, 876–879. doi:10.1214/aoms/1177703591
  2. ^ Marshall, A.W., & Olkin, I. (1967). "Scaling of matrices to achieve specified row and column sums." Numerische Mathematik. 12(1), 83–90. doi:10.1007/BF02170999
  3. ^ Sinkhorn, Richard, & Knopp, Paul. (1967). "Concerning nonnegative matrices and doubly stochastic matrices". Pacific J. Math. 21, 343–348.
  4. ^ Idel, Martin; Wolf, Michael M. (2015). "Sinkhorn normal form for unitary matrices". Linear Algebra and its Applications. 471: 76–84. doi:10.1016/j.laa.2014.12.031.