Submersion (mathematics)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 84.208.49.107 (talk) at 05:48, 23 September 2015 (→‎Definition). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion.

Definition

Let M and N be differentiable manifolds and f : MN be a differentiable map between them. The map f is a submersion at a point pM if its differential

is a surjective linear map.[1] In this case p is called a regular point of the map f, otherwise, p is a critical point. A point qN is a regular value of f if all points p in the pre-image f−1(q) are regular points. A differentiable map f that is a submersion at each point pM is called a submersion. Equivalently, f is a submersion if its differential Dfp has constant rank equal to the dimension of N.

A word of warning: some authors use the term "critical point" to describe a point where the rank of the Jacobian matrix of f at p is not maximal.[2] Indeed this is the more useful notion in singularity theory. If the dimension of M is greater than or equal to the dimension of N then these two notions of critical point coincide. But if the dimension of M is less than the dimension of N, all points are critical according to the definition above (the differential cannot be surjective) but the rank of the Jacobian may still be maximal (if it is equal to dim M). The definition given above is more commonly used, e.g. in the formulation of Sard's theorem.

Examples

  • Any projection

Local normal form

If f: MN is a submersion at p and f(p) = qN then there exist an open neighborhood U of p in M, an open neighborhood V of q in N, and local coordinates (x1,…,xm) at p and (x1,…,xn) at q such that f(U) = V and the map f in these local coordinates is the standard projection

It follows that the full pre-image f−1(q) in M of a regular value qN under a differentiable map f: MN is either empty or is a differentiable manifold of dimension dim M − dim N, possibly disconnected. This is the content of the regular value theorem (also known as the submersion theorem). In particular, the conclusion holds for all qN if the map f is a submersion.

Topological manifold submersions

Submersions are also well defined for general topological manifolds.[3] A topological manifold submersion is a continuous surjection f : MN such that for all pM, for some continuous charts ψ at p and φ at f(p), the map ψ-1 ∘ f ∘ φ is equal to the projection map from Rm to Rn, where m=dim(M) ≥ n=dim(N).

See also

Notes

References

  • Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. (1985). Singularities of Differentiable Maps: Volume 1. Birkhäuser. ISBN 0-8176-3187-9. {{cite book}}: Invalid |ref=harv (help)
  • Bruce, J. W.; Giblin, P. J. (1984), Curves and Singularities, Cambridge University Press, ISBN 0-521-42999-4
  • Crampin, Michael; Pirani, Felix Arnold Edward (1994). Applicable differential geometry. Cambridge, England: Cambridge University Press. ISBN 978-0-521-23190-9. {{cite book}}: Invalid |ref=harv (help)
  • do Carmo, Manfredo Perdigao (1994). Riemannian Geometry. ISBN 978-0-8176-3490-2. {{cite book}}: Invalid |ref=harv (help)
  • Frankel, Theodore (1997). The Geometry of Physics. Cambridge: Cambridge University Press. ISBN 0-521-38753-1. {{cite book}}: Invalid |ref=harv (help)
  • Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004). Riemannian Geometry (3rd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-20493-0. {{cite book}}: Invalid |ref=harv (help)
  • Kosinski, Antoni Albert (2007) [1993]. Differential manifolds. Mineola, New York: Dover Publications. ISBN 978-0-486-46244-8. {{cite book}}: Invalid |ref=harv (help)
  • Lang, Serge (1999). Fundamentals of Differential Geometry. Graduate Texts in Mathematics. New York: Springer. ISBN 978-0-387-98593-0. {{cite book}}: Invalid |ref=harv (help)
  • Sternberg, Shlomo Zvi (2012). Curvature in Mathematics and Physics. Mineola, New York: Dover Publications. ISBN 978-0-486-47855-5. {{cite book}}: Invalid |ref=harv (help)