Jump to content

Environmental DNA: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Terrestrial arthropods
Line 45: Line 45:
Terrestrial arthropods are experiencing massive decline in Europe as well as globally,<ref>{{Cite book|url=https://books.google.com/books?id=xYyOnQAACAAJ&q=%22Spineless:+status+and+trends+of+the+world%27s+invertebrates%22|title = Spineless: Status and Trends of the World's Invertebrates|isbn = 9780900881701|last1 = Collen|first1 = Ben|last2 = (Zoologist)|first2 = Monika Böhm|last3 = Kemp|first3 = Rachael|last4 = Baillie|first4 = Jonathan|year = 2012}}</ref><ref>{{cite journal |doi = 10.1126/science.1251817|title = Defaunation in the Anthropocene|year = 2014|last1 = Dirzo|first1 = R.|last2 = Young|first2 = H. S.|last3 = Galetti|first3 = M.|last4 = Ceballos|first4 = G.|last5 = Isaac|first5 = N. J. B.|last6 = Collen|first6 = B.|journal = Science|volume = 345|issue = 6195|pages = 401–406|pmid = 25061202|bibcode = 2014Sci...345..401D|s2cid = 206555761|url = http://discovery.ucl.ac.uk/1436030/1/Collen_Dirzo%20etal%202014%20Science%20Accepted.pdf}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=87OPjwEACAAJ&q=%22European+red+list+of+bees%22|title = European Red List of Bees|year = 2014|isbn = 9789279445125}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=Sz81cgAACAAJ&q=%22European+red+list+of+butterflies%22|title = European Red List of Butterflies|isbn = 9789279141515|last1 = Swaay|first1 = Chris van|year = 2010}}</ref> although only a fraction of the species have been assessed and the majority of insects are still undescribed to science.<ref>{{cite journal |doi = 10.1146/annurev-ento-020117-043348|title = How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?|year = 2018|last1 = Stork|first1 = Nigel E.|journal = Annual Review of Entomology|volume = 63|pages = 31–45|pmid = 28938083}}</ref> As one example, grassland ecosystems are home to diverse taxonomic and functional groups of terrestrial arthropods, such as pollinators, phytophagous insects, and predators, that use nectar and pollen for food sources, and stem and leaf tissue for food and development. These communities harbor endangered species, since many habitats have disappeared or are under significant threat.<ref>{{cite journal |doi = 10.1007/s10531-013-0537-x|title = European grassland ecosystems: Threatened hotspots of biodiversity|year = 2013|last1 = Habel|first1 = Jan Christian|last2 = Dengler|first2 = Jürgen|last3 = Janišová|first3 = Monika|last4 = Török|first4 = Péter|last5 = Wellstein|first5 = Camilla|last6 = Wiezik|first6 = Michal|journal = Biodiversity and Conservation|volume = 22|issue = 10|pages = 2131–2138|s2cid = 15901140}}</ref><ref>{{cite journal |doi = 10.1146/annurev-ento-120811-153540|title = Ecological Mechanisms Underlying Arthropod Species Diversity in Grasslands|year = 2013|last1 = Joern|first1 = Anthony|last2 = Laws|first2 = Angela N.|journal = Annual Review of Entomology|volume = 58|pages = 19–36|pmid = 22830354}}</ref> Therefore, extensive efforts are being conducted in order to restore European grassland ecosystems and conserve biodiversity.<ref>{{Cite book|url=https://books.google.com/books?id=t8n3SAAACAAJ&q=%22LIFE+and+Europe%E2%80%99s+grasslands.+Restoring+a+forgotten+habitat.%22|title = LIFE and Europe's Grasslands: Restoring a Forgotten Habitat|isbn = 9789279101595|last1 = Silva|first1 = João Pedro|year = 2008}}</ref> For instance, pollinators like bees and butterflies represent an important ecological group that has undergone severe decline in Europe, indicating a dramatic loss of grassland biodiversity.<ref>{{cite journal |doi = 10.1126/science.1127863|title = Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands|year = 2006|last1 = Biesmeijer|first1 = J. C.|last2 = Roberts|first2 = S. P.|last3 = Reemer|first3 = M.|last4 = Ohlemüller|first4 = R.|last5 = Edwards|first5 = M.|last6 = Peeters|first6 = T.|last7 = Schaffers|first7 = A. P.|last8 = Potts|first8 = S. G.|last9 = Kleukers|first9 = R.|last10 = Thomas|first10 = C. D.|last11 = Settele|first11 = J.|last12 = Kunin|first12 = W. E.|journal = Science|volume = 313|issue = 5785|pages = 351–354|pmid = 16857940|bibcode = 2006Sci...313..351B|s2cid = 16273738}}</ref><ref>{{cite journal |doi = 10.1126/science.1255957|title = Bee declines driven by combined stress from parasites, pesticides, and lack of flowers|year = 2015|last1 = Goulson|first1 = D.|last2 = Nicholls|first2 = E.|last3 = Botias|first3 = C.|last4 = Rotheray|first4 = E. L.|journal = Science|volume = 347|issue = 6229|pmid = 25721506|s2cid = 206558985}}</ref><ref>{{cite journal |doi = 10.1016/j.tree.2010.01.007|title = Global pollinator declines: Trends, impacts and drivers|year = 2010|last1 = Potts|first1 = Simon G.|last2 = Biesmeijer|first2 = Jacobus C.|last3 = Kremen|first3 = Claire|last4 = Neumann|first4 = Peter|last5 = Schweiger|first5 = Oliver|last6 = Kunin|first6 = William E.|journal = Trends in Ecology & Evolution|volume = 25|issue = 6|pages = 345–353|pmid = 20188434}}</ref><ref>{{cite journal |doi = 10.2800/89760|year = 2013|author1 = European Environment Agency|title = The European grassland butterfly indicator: 1990–2011|publisher = Publications Office}}</ref> The vast majority of flowering plants are pollinated by insects and other animals both in temperate regions and the tropics.<ref>{{cite journal |doi = 10.1111/j.1600-0706.2010.18644.x|title = How many flowering plants are pollinated by animals?|year = 2011|last1 = Ollerton|first1 = Jeff|last2 = Winfree|first2 = Rachael|last3 = Tarrant|first3 = Sam|journal = Oikos|volume = 120|issue = 3|pages = 321–326}}</ref> The majority of insect species are herbivores feeding on different parts of plants, and most of these are specialists, relying on one or a few plant species as their main food resource.<ref>{{cite book |doi = 10.1017/CBO9780511975387|title = Insect Ecology|year = 2011|last1 = Price|first1 = Peter W.|last2 = Denno|first2 = Robert F.|last3 = Eubanks|first3 = Micky D.|last4 = Finke|first4 = Deborah L.|last5 = Kaplan|first5 = Ian|isbn = 9780511975387}}</ref> However, given the gap in knowledge on existing insect species, and the fact that most species are still undescribed, it is clear that for the majority of plant species in the world, there is limited knowledge about the arthropod communities they harbor and interact with.<ref name=Thomsen2019>{{cite journal |doi = 10.1002/ece3.4809|title = Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods|year = 2019|last1 = Thomsen|first1 = Philip Francis|last2 = Sigsgaard|first2 = Eva E.|journal = Ecology and Evolution|volume = 9|issue = 4|pages = 1665–1679|pmid = 30847063|s2cid = 71143282}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
Terrestrial arthropods are experiencing massive decline in Europe as well as globally,<ref>{{Cite book|url=https://books.google.com/books?id=xYyOnQAACAAJ&q=%22Spineless:+status+and+trends+of+the+world%27s+invertebrates%22|title = Spineless: Status and Trends of the World's Invertebrates|isbn = 9780900881701|last1 = Collen|first1 = Ben|last2 = (Zoologist)|first2 = Monika Böhm|last3 = Kemp|first3 = Rachael|last4 = Baillie|first4 = Jonathan|year = 2012}}</ref><ref>{{cite journal |doi = 10.1126/science.1251817|title = Defaunation in the Anthropocene|year = 2014|last1 = Dirzo|first1 = R.|last2 = Young|first2 = H. S.|last3 = Galetti|first3 = M.|last4 = Ceballos|first4 = G.|last5 = Isaac|first5 = N. J. B.|last6 = Collen|first6 = B.|journal = Science|volume = 345|issue = 6195|pages = 401–406|pmid = 25061202|bibcode = 2014Sci...345..401D|s2cid = 206555761|url = http://discovery.ucl.ac.uk/1436030/1/Collen_Dirzo%20etal%202014%20Science%20Accepted.pdf}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=87OPjwEACAAJ&q=%22European+red+list+of+bees%22|title = European Red List of Bees|year = 2014|isbn = 9789279445125}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=Sz81cgAACAAJ&q=%22European+red+list+of+butterflies%22|title = European Red List of Butterflies|isbn = 9789279141515|last1 = Swaay|first1 = Chris van|year = 2010}}</ref> although only a fraction of the species have been assessed and the majority of insects are still undescribed to science.<ref>{{cite journal |doi = 10.1146/annurev-ento-020117-043348|title = How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?|year = 2018|last1 = Stork|first1 = Nigel E.|journal = Annual Review of Entomology|volume = 63|pages = 31–45|pmid = 28938083}}</ref> As one example, grassland ecosystems are home to diverse taxonomic and functional groups of terrestrial arthropods, such as pollinators, phytophagous insects, and predators, that use nectar and pollen for food sources, and stem and leaf tissue for food and development. These communities harbor endangered species, since many habitats have disappeared or are under significant threat.<ref>{{cite journal |doi = 10.1007/s10531-013-0537-x|title = European grassland ecosystems: Threatened hotspots of biodiversity|year = 2013|last1 = Habel|first1 = Jan Christian|last2 = Dengler|first2 = Jürgen|last3 = Janišová|first3 = Monika|last4 = Török|first4 = Péter|last5 = Wellstein|first5 = Camilla|last6 = Wiezik|first6 = Michal|journal = Biodiversity and Conservation|volume = 22|issue = 10|pages = 2131–2138|s2cid = 15901140}}</ref><ref>{{cite journal |doi = 10.1146/annurev-ento-120811-153540|title = Ecological Mechanisms Underlying Arthropod Species Diversity in Grasslands|year = 2013|last1 = Joern|first1 = Anthony|last2 = Laws|first2 = Angela N.|journal = Annual Review of Entomology|volume = 58|pages = 19–36|pmid = 22830354}}</ref> Therefore, extensive efforts are being conducted in order to restore European grassland ecosystems and conserve biodiversity.<ref>{{Cite book|url=https://books.google.com/books?id=t8n3SAAACAAJ&q=%22LIFE+and+Europe%E2%80%99s+grasslands.+Restoring+a+forgotten+habitat.%22|title = LIFE and Europe's Grasslands: Restoring a Forgotten Habitat|isbn = 9789279101595|last1 = Silva|first1 = João Pedro|year = 2008}}</ref> For instance, pollinators like bees and butterflies represent an important ecological group that has undergone severe decline in Europe, indicating a dramatic loss of grassland biodiversity.<ref>{{cite journal |doi = 10.1126/science.1127863|title = Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands|year = 2006|last1 = Biesmeijer|first1 = J. C.|last2 = Roberts|first2 = S. P.|last3 = Reemer|first3 = M.|last4 = Ohlemüller|first4 = R.|last5 = Edwards|first5 = M.|last6 = Peeters|first6 = T.|last7 = Schaffers|first7 = A. P.|last8 = Potts|first8 = S. G.|last9 = Kleukers|first9 = R.|last10 = Thomas|first10 = C. D.|last11 = Settele|first11 = J.|last12 = Kunin|first12 = W. E.|journal = Science|volume = 313|issue = 5785|pages = 351–354|pmid = 16857940|bibcode = 2006Sci...313..351B|s2cid = 16273738}}</ref><ref>{{cite journal |doi = 10.1126/science.1255957|title = Bee declines driven by combined stress from parasites, pesticides, and lack of flowers|year = 2015|last1 = Goulson|first1 = D.|last2 = Nicholls|first2 = E.|last3 = Botias|first3 = C.|last4 = Rotheray|first4 = E. L.|journal = Science|volume = 347|issue = 6229|pmid = 25721506|s2cid = 206558985}}</ref><ref>{{cite journal |doi = 10.1016/j.tree.2010.01.007|title = Global pollinator declines: Trends, impacts and drivers|year = 2010|last1 = Potts|first1 = Simon G.|last2 = Biesmeijer|first2 = Jacobus C.|last3 = Kremen|first3 = Claire|last4 = Neumann|first4 = Peter|last5 = Schweiger|first5 = Oliver|last6 = Kunin|first6 = William E.|journal = Trends in Ecology & Evolution|volume = 25|issue = 6|pages = 345–353|pmid = 20188434}}</ref><ref>{{cite journal |doi = 10.2800/89760|year = 2013|author1 = European Environment Agency|title = The European grassland butterfly indicator: 1990–2011|publisher = Publications Office}}</ref> The vast majority of flowering plants are pollinated by insects and other animals both in temperate regions and the tropics.<ref>{{cite journal |doi = 10.1111/j.1600-0706.2010.18644.x|title = How many flowering plants are pollinated by animals?|year = 2011|last1 = Ollerton|first1 = Jeff|last2 = Winfree|first2 = Rachael|last3 = Tarrant|first3 = Sam|journal = Oikos|volume = 120|issue = 3|pages = 321–326}}</ref> The majority of insect species are herbivores feeding on different parts of plants, and most of these are specialists, relying on one or a few plant species as their main food resource.<ref>{{cite book |doi = 10.1017/CBO9780511975387|title = Insect Ecology|year = 2011|last1 = Price|first1 = Peter W.|last2 = Denno|first2 = Robert F.|last3 = Eubanks|first3 = Micky D.|last4 = Finke|first4 = Deborah L.|last5 = Kaplan|first5 = Ian|isbn = 9780511975387}}</ref> However, given the gap in knowledge on existing insect species, and the fact that most species are still undescribed, it is clear that for the majority of plant species in the world, there is limited knowledge about the arthropod communities they harbor and interact with.<ref name=Thomsen2019>{{cite journal |doi = 10.1002/ece3.4809|title = Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods|year = 2019|last1 = Thomsen|first1 = Philip Francis|last2 = Sigsgaard|first2 = Eva E.|journal = Ecology and Evolution|volume = 9|issue = 4|pages = 1665–1679|pmid = 30847063|s2cid = 71143282}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>


Terrestrial arthropod communities have traditionally been collected and studied using methods, such as Malaise traps and pitfall traps, which are very effective but somewhat cumbersome and potentially invasive methods. In some instances, these techniques fall short of performing efficient and standardized surveys, due to, for example, phenotypic plasticity, closely related species, and difficulties in identifying juvenile stages. Furthermore, morphological identification depends directly on taxonomic expertise, which is in decline.<ref>{{cite journal |doi = 10.1017/S1367943002002299|title = Declines in the numbers of amateur and professional taxonomists: Implications for conservation|year = 2002|last1 = Hopkins|first1 = G. W.|last2 = Freckleton|first2 = R. P.|journal = Animal Conservation|volume = 5|issue = 3|pages = 245–249}}</ref><ref>{{cite journal |doi = 10.1093/sysbio/syu069|title = Declining Rates of Species Described per Taxonomist: Slowdown of Progress or a Side-effect of Improved Quality in Taxonomy?|year = 2015|last1 = Sangster|first1 = George|last2 = Luksenburg|first2 = Jolanda A.|journal = Systematic Biology|volume = 64|issue = 1|pages = 144–151|pmid = 25190593}}</ref><ref>{{cite journal |doi = 10.1126/science.303.5656.285|title = Taxonomy: Impediment or Expedient?|year = 2004|last1 = Wheeler|first1 = Q. D.|last2 = Raven|first2 = P. H.|last3 = Wilson|first3 = E. O.|journal = Science|volume = 303|issue = 5656|page = 285|pmid = 14726557|s2cid = 27481787}}</ref> All such limitations of traditional biodiversity monitoring have created a demand for alternative approaches. Meanwhile, the advance in DNA sequencing technologies continuously provides new means of obtaining biological data.<ref>{{cite journal |doi = 10.1016/j.tree.2014.04.003|title = Environmental DNA for wildlife biology and biodiversity monitoring|year = 2014|last1 = Bohmann|first1 = Kristine|last2 = Evans|first2 = Alice|last3 = Gilbert|first3 = M. Thomas P.|last4 = Carvalho|first4 = Gary R.|last5 = Creer|first5 = Simon|last6 = Knapp|first6 = Michael|last7 = Yu|first7 = Douglas W.|last8 = De Bruyn|first8 = Mark|journal = Trends in Ecology & Evolution|volume = 29|issue = 6|pages = 358–367|pmid = 24821515}}</ref><ref>{{cite journal |doi = 10.1038/s41559-017-0176|title = Connecting Earth observation to high-throughput biodiversity data|year = 2017|last1 = Bush|first1 = Alex|last2 = Sollmann|first2 = Rahel|last3 = Wilting|first3 = Andreas|last4 = Bohmann|first4 = Kristine|last5 = Cole|first5 = Beth|last6 = Balzter|first6 = Heiko|last7 = Martius|first7 = Christopher|last8 = Zlinszky|first8 = András|last9 = Calvignac-Spencer|first9 = Sébastien|last10 = Cobbold|first10 = Christina A.|last11 = Dawson|first11 = Terence P.|last12 = Emerson|first12 = Brent C.|last13 = Ferrier|first13 = Simon|last14 = Gilbert|first14 = M. Thomas P.|last15 = Herold|first15 = Martin|last16 = Jones|first16 = Laurence|last17 = Leendertz|first17 = Fabian H.|last18 = Matthews|first18 = Louise|last19 = Millington|first19 = James D. A.|last20 = Olson|first20 = John R.|last21 = Ovaskainen|first21 = Otso|last22 = Raffaelli|first22 = Dave|last23 = Reeve|first23 = Richard|last24 = Rödel|first24 = Mark-Oliver|last25 = Rodgers|first25 = Torrey W.|last26 = Snape|first26 = Stewart|last27 = Visseren-Hamakers|first27 = Ingrid|last28 = Vogler|first28 = Alfried P.|last29 = White|first29 = Piran C. L.|last30 = Wooster|first30 = Martin J.|journal = Nature Ecology & Evolution|volume = 1|issue = 7|page = 176|pmid = 28812589|s2cid = 205564094|url = http://nora.nerc.ac.uk/id/eprint/519336/1/N519336PP.pdf|display-authors = 29}}</ref><ref>{{cite journal |doi = 10.1111/2041-210X.12574|title = The ecologist's field guide to sequence‐based identification of biodiversity|year = 2016|last1 = Creer|first1 = Simon|last2 = Deiner|first2 = Kristy|last3 = Frey|first3 = Serita|last4 = Porazinska|first4 = Dorota|last5 = Taberlet|first5 = Pierre|last6 = Thomas|first6 = W. Kelley|last7 = Potter|first7 = Caitlin|last8 = Bik|first8 = Holly M.|journal = Methods in Ecology and Evolution|volume = 7|issue = 9|pages = 1008–1018}}</ref><ref>{{cite journal |doi = 10.1016/j.biocon.2014.11.019|title = Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity|year = 2015|last1 = Thomsen|first1 = Philip Francis|last2 = Willerslev|first2 = Eske|journal = Biological Conservation|volume = 183|pages = 4–18}}</ref> Hence, several new molecular approaches have recently been suggested for obtaining fast and efficient data on arthropod communities and their interactions through non‐invasive genetic techniques. This includes extracting DNA from sources such as bulk samples or insect soups,<ref>{{cite journal |doi = 10.1111/2041-210X.12557|title = Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil|year = 2016|last1 = Arribas|first1 = Paula|last2 = Andújar|first2 = Carmelo|last3 = Hopkins|first3 = Kevin|last4 = Shepherd|first4 = Matthew|last5 = Vogler|first5 = Alfried P.|journal = Methods in Ecology and Evolution|volume = 7|issue = 9|pages = 1071–1081}}</ref><ref>{{cite journal |doi = 10.7717/peerj.1966|title = Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects|year = 2016|last1 = Elbrecht|first1 = Vasco|last2 = Taberlet|first2 = Pierre|last3 = Dejean|first3 = Tony|last4 = Valentini|first4 = Alice|last5 = Usseglio-Polatera|first5 = Philippe|last6 = Beisel|first6 = Jean-Nicolas|last7 = Coissac|first7 = Eric|last8 = Boyer|first8 = Frederic|last9 = Leese|first9 = Florian|journal = PeerJ|volume = 4|pages = e1966|pmid = 27114891|pmc = 4841222}}</ref><ref>{{cite journal |doi = 10.1371/journal.pone.0017497|title = Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos|year = 2011|last1 = Hajibabaei|first1 = Mehrdad|last2 = Shokralla|first2 = Shadi|last3 = Zhou|first3 = Xin|last4 = Singer|first4 = Gregory A. C.|last5 = Baird|first5 = Donald J.|journal = PLOS ONE|volume = 6|issue = 4|pages = e17497|pmid = 21533287|pmc = 3076369|bibcode = 2011PLoSO...617497H}}</ref><ref>{{cite journal |doi = 10.1371/journal.pone.0142503|title = Spider Web DNA: A New Spin on Noninvasive Genetics of Predator and Prey|year = 2015|last1 = Xu|first1 = Charles C. Y.|last2 = Yen|first2 = Ivy J.|last3 = Bowman|first3 = Dean|last4 = Turner|first4 = Cameron R.|journal = PLOS ONE|volume = 10|issue = 11|pages = e0142503|pmid = 26606730|pmc = 4659541|bibcode = 2015PLoSO..1042503X|s2cid = 5331545}}</ref> empty leaf mines,<ref>{{cite journal |doi = 10.1371/journal.pone.0117872|title = Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach|year = 2015|last1 = Derocles|first1 = Stéphane A. P.|last2 = Evans|first2 = Darren M.|last3 = Nichols|first3 = Paul C.|last4 = Evans|first4 = S. Aifionn|last5 = Lunt|first5 = David H.|journal = PLOS ONE|volume = 10|issue = 2|pages = e0117872|pmid = 25710377|pmc = 4339730|bibcode = 2015PLoSO..1017872D}}</ref> spider webs,<ref>{{cite journal |doi = 10.1007/s12686-016-0537-8|title = DNA extraction from spider webs|year = 2016|last1 = Blake|first1 = Max|last2 = McKeown|first2 = Niall J.|last3 = Bushell|first3 = Mark L. T.|last4 = Shaw|first4 = Paul W.|journal = Conservation Genetics Resources|volume = 8|issue = 3|pages = 219–221|s2cid = 15122457}}</ref><ref>{{cite journal |doi = 10.1007/s12686-016-0537-8|title = DNA extraction from spider webs|year = 2016|last1 = Blake|first1 = Max|last2 = McKeown|first2 = Niall J.|last3 = Bushell|first3 = Mark L. T.|last4 = Shaw|first4 = Paul W.|journal = Conservation Genetics Resources|volume = 8|issue = 3|pages = 219–221|s2cid = 15122457}}</ref> pitcher plant fluid,<ref>{{cite journal |doi = 10.1111/aec.12271|title = Metabarcoding as a tool for investigating arthropod diversity in ''Nepenthespitcher'' plants|year = 2016|last1 = Bittleston|first1 = Leonora S.|last2 = Baker|first2 = Christopher C. M.|last3 = Strominger|first3 = Lila B.|last4 = Pringle|first4 = Anne|last5 = Pierce|first5 = Naomi E.|journal = Austral Ecology|volume = 41|issue = 2|pages = 120–132}}</ref> environmental samples like soil and water (environmental DNA [eDNA]),<ref>{{cite journal |doi = 10.1111/j.1365-294X.2012.05542.x|title = Environmental DNA|year = 2012|last1 = Taberlet|first1 = Pierre|last2 = Coissac|first2 = Eric|last3 = Hajibabaei|first3 = Mehrdad|last4 = Rieseberg|first4 = Loren H.|journal = Molecular Ecology|volume = 21|issue = 8|pages = 1789–1793|pmid = 22486819|s2cid = 3961830}}</ref><ref>{{cite journal |doi = 10.1111/j.1365-294X.2011.05418.x|title = Monitoring endangered freshwater biodiversity using environmental DNA|year = 2012|last1 = Thomsen|first1 = Philip Francis|last2 = Kielgast|first2 = JOS|last3 = Iversen|first3 = Lars L.|last4 = Wiuf|first4 = Carsten|last5 = Rasmussen|first5 = Morten|last6 = Gilbert|first6 = M. Thomas P.|last7 = Orlando|first7 = Ludovic|last8 = Willerslev|first8 = Eske|journal = Molecular Ecology|volume = 21|issue = 11|pages = 2565–2573|pmid = 22151771}}</ref><ref>{{cite journal |doi = 10.1016/j.biocon.2014.11.019|title = Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity|year = 2015|last1 = Thomsen|first1 = Philip Francis|last2 = Willerslev|first2 = Eske|journal = Biological Conservation|volume = 183|pages = 4–18}}</ref><ref>{{cite journal |doi = 10.1111/mec.14919|title = Body size determines soil community assembly in a tropical forest|year = 2019|last1 = Zinger|first1 = Lucie|last2 = Taberlet|first2 = Pierre|last3 = Schimann|first3 = Heidy|last4 = Bonin|first4 = Aurélie|last5 = Boyer|first5 = Frédéric|last6 = De Barba|first6 = Marta|last7 = Gaucher|first7 = Philippe|last8 = Gielly|first8 = Ludovic|last9 = Giguet‐Covex|first9 = Charline|last10 = Iribar|first10 = Amaia|last11 = Réjou‐Méchain|first11 = Maxime|last12 = Rayé|first12 = Gilles|last13 = Rioux|first13 = Delphine|last14 = Schilling|first14 = Vincent|last15 = Tymen|first15 = Blaise|last16 = Viers|first16 = Jérôme|last17 = Zouiten|first17 = Cyril|last18 = Thuiller|first18 = Wilfried|last19 = Coissac|first19 = Eric|last20 = Chave|first20 = Jérôme|journal = Molecular Ecology|volume = 28|issue = 3|pages = 528–543|pmid = 30375061}}</ref> host plant and predatory diet identification from insect DNA extracts,<ref>{{cite journal |doi = 10.1098/rspb.2008.1264|title = DNA barcoding insect–host plant associations|year = 2009|last1 = Jurado-Rivera|first1 = José A.|last2 = Vogler|first2 = Alfried P.|last3 = Reid|first3 = Chris A.M|last4 = Petitpierre|first4 = Eduard|last5 = Gómez-Zurita|first5 = Jesús|journal = Proceedings of the Royal Society B: Biological Sciences|volume = 276|issue = 1657|pages = 639–648|pmid = 19004756|pmc = 2660938}}</ref><ref>{{cite journal |doi = 10.1371/journal.pone.0161841|title = Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents|year = 2016|last1 = Paula|first1 = Débora P.|last2 = Linard|first2 = Benjamin|last3 = Crampton-Platt|first3 = Alex|last4 = Srivathsan|first4 = Amrita|last5 = Timmermans|first5 = Martijn J. T. N.|last6 = Sujii|first6 = Edison R.|last7 = Pires|first7 = Carmen S. S.|last8 = Souza|first8 = Lucas M.|last9 = Andow|first9 = David A.|last10 = Vogler|first10 = Alfried P.|journal = PLOS ONE|volume = 11|issue = 9|pages = e0161841|pmid = 27622637|pmc = 5021305|bibcode = 2016PLoSO..1161841P}}</ref> and predator scat from bats.<ref>{{cite journal |doi = 10.1371/journal.pone.0021441|title = Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing|year = 2011|last1 = Bohmann|first1 = Kristine|last2 = Monadjem|first2 = Ara|last3 = Lehmkuhl Noer|first3 = Christina|last4 = Rasmussen|first4 = Morten|last5 = Zeale|first5 = Matt R. K.|last6 = Clare|first6 = Elizabeth|last7 = Jones|first7 = Gareth|last8 = Willerslev|first8 = Eske|last9 = Gilbert|first9 = M. Thomas P.|journal = PLOS ONE|volume = 6|issue = 6|pages = e21441|pmid = 21731749|pmc = 3120876|bibcode = 2011PLoSO...621441B}}</ref><ref>{{cite journal |doi = 10.1371/journal.pone.0082168|title = Next Generation Sequencing of Fecal DNA Reveals the Dietary Diversity of the Widespread Insectivorous Predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland|year = 2013|last1 = Vesterinen|first1 = Eero J.|last2 = Lilley|first2 = Thomas|last3 = Laine|first3 = Veronika N.|last4 = Wahlberg|first4 = Niklas|journal = PLOS ONE|volume = 8|issue = 11|pages = e82168|pmid = 24312405|pmc = 3842304|bibcode = 2013PLoSO...882168V}}</ref> Recently, also DNA from pollen attached to insects has been used for retrieving information on plant–pollinator interactions.<ref>{{cite journal |doi = 10.3732/apps.1600124|title = Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions|year = 2017|last1 = Bell|first1 = Karen L.|last2 = Fowler|first2 = Julie|last3 = Burgess|first3 = Kevin S.|last4 = Dobbs|first4 = Emily K.|last5 = Gruenewald|first5 = David|last6 = Lawley|first6 = Brice|last7 = Morozumi|first7 = Connor|last8 = Brosi|first8 = Berry J.|journal = Applications in Plant Sciences|volume = 5|issue = 6|pmid = 28690929|pmc = 5499302|s2cid = 6590244}}</ref><ref>{{cite journal |doi = 10.1038/srep27282|title = Using metabarcoding to reveal and quantify plant-pollinator interactions|year = 2016|last1 = Pornon|first1 = André|last2 = Escaravage|first2 = Nathalie|last3 = Burrus|first3 = Monique|last4 = Holota|first4 = Hélène|last5 = Khimoun|first5 = Aurélie|last6 = Mariette|first6 = Jérome|last7 = Pellizzari|first7 = Charlène|last8 = Iribar|first8 = Amaia|last9 = Etienne|first9 = Roselyne|last10 = Taberlet|first10 = Pierre|last11 = Vidal|first11 = Marie|last12 = Winterton|first12 = Peter|last13 = Zinger|first13 = Lucie|last14 = Andalo|first14 = Christophe|journal = Scientific Reports|volume = 6|page = 27282|pmid = 27255732|pmc = 4891682|bibcode = 2016NatSR...627282P}}</ref> Many of such recent studies rely on DNA metabarcoding—high‐throughput sequencing of PCR amplicons using generic primers.<ref>{{cite journal |doi = 10.1093/oso/9780198767220.001.0001|year = 2018|last1 = Taberlet|first1 = Pierre|last2 = Bonin|first2 = Aurélie|last3 = Zinger|first3 = Lucie|last4 = Coissac|first4 = Eric|isbn = 9780198767220}}</ref><ref>{{cite journal |doi = 10.1111/j.1365-294X.2012.05542.x|title = Environmental DNA|year = 2012|last1 = Taberlet|first1 = Pierre|last2 = Coissac|first2 = Eric|last3 = Hajibabaei|first3 = Mehrdad|last4 = Rieseberg|first4 = Loren H.|journal = Molecular Ecology|volume = 21|issue = 8|pages = 1789–1793|pmid = 22486819|s2cid = 3961830}}</ref><ref name=Thomsen2019 />
Terrestrial arthropod communities have traditionally been collected and studied using methods, such as Malaise traps and pitfall traps, which are very effective but somewhat cumbersome and potentially invasive methods. In some instances, these techniques fall short of performing efficient and standardized surveys, due to, for example, phenotypic plasticity, closely related species, and difficulties in identifying juvenile stages. Furthermore, morphological identification depends directly on taxonomic expertise, which is in decline (Hopkins & Freckleton, 2002; Sangster & Luksenburg, 2015; Wheeler, Raven, & Wilson, 2004). All such limitations of traditional biodiversity monitoring have created a demand for alternative approaches. Meanwhile, the advance in DNA sequencing technologies continuously provides new means of obtaining biological data (Bohmann et al., 2014; Bush et al., 2017; Creer et al., 2016; Thomsen & Willerslev, 2015). Hence, several new molecular approaches have recently been suggested for obtaining fast and efficient data on arthropod communities and their interactions through non‐invasive genetic techniques. This includes extracting DNA from sources such as bulk samples or insect soups (Arribas, Andújar, Hopkins, Shepherd, & Vogler, 2016; Elbrecht et al., 2016; Hajibabaei, Shokralla, Zhou, Singer, & Baird, 2011; Yu et al., 2012), empty leaf mines (Derocles, Evans, Nichols, Evans, & Lunt, 2015), spider webs (Blake, McKeown, Bushell, & Shaw, 2016; Xu, Yen, Bowman, & Turner, 2015), pitcher plant fluid (Bittleston, Baker, Strominger, Pringle, & Pierce, 2015), environmental samples like soil and water (environmental DNA [eDNA]) (Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012; Thomsen et al., 2012; Thomsen & Willerslev, 2015; Zinger et al., 2018), host plant and predatory diet identification from insect DNA extracts (Jurado‐Rivera, Vogler, Reid, Petitpierre, & Gómez‐Zurita, 2009; Paula et al., 2016), and predator scat from bats (Bohmann et al., 2011; Vesterinen, Lilley, Laine, & Wahlberg, 2013). Recently, also DNA from pollen attached to insects has been used for retrieving information on plant–pollinator interactions (Bell et al., 2017; Pornon et al., 2016). Many of such recent studies rely on DNA metabarcoding—high‐throughput sequencing of PCR amplicons using generic primers (Taberlet, Bonin, Zinger, & Coissac, 2018; Taberlet et al., 2012).<ref name=Thomsen2019 />



=== Snow tracks ===
=== Snow tracks ===

Revision as of 08:19, 1 February 2021

In this example, the fish leaves its eDNA behind as it moves through the water, but its eDNA slowly dissipates over time.

Environmental DNA or eDNA is DNA that is collected from a variety of environmental samples such as soil, seawater, snow or even air [1] rather than directly sampled from an individual organism. As various organisms interact with the environment, DNA is expelled and accumulates in their surroundings. Example sources of eDNA include, but are not limited to, feces, mucus, gametes, shed skin, carcasses and hair.[2] Such samples can be analyzed by high-throughput DNA sequencing methods, known as metagenomics, metabarcoding, and single-species detection,[3] for rapid measurement and monitoring of biodiversity. In order to better differentiate between organisms within a sample, DNA metabarcoding is used in which the sample is analyzed and uses previously studied DNA libraries to determine what organisms are present (e.g. BLAST).[4] The analysis of eDNA has great potential, not only for monitoring common species, but to genetically detect and identify other extant species that could influence conservation efforts.[5] This method allows for biomonitoring without requiring collection of the living organism, creating the ability to study organisms that are invasive, elusive, or endangered without introducing anthropogenic stress on the organism. Access to this genetic information makes a critical contribution to the understanding of population size, species distribution, and population dynamics for species not well documented. The integrity of eDNA samples is dependent upon its preservation within the environment. Soil, permafrost, freshwater and seawater are well-studied macro environments from which eDNA samples have been extracted, each of which include many more conditioned subenvironments.[6] Because of its versatility, eDNA is applied in many subenvironments such as freshwater sampling, seawater sampling, terrestrial soil sampling (tundra permafrost), aquatic soil sampling (river, lake, pond, and ocean sediment),[7] or other environments where normal sampling procedures can become problematic.[6]

Collection

Subglacial aquatic sediment continuous coring
The cylindrical platform can pass through the access borehole and penetrate the sediment. The lead ropes link between the surface winch and the underwater platform and the cable-suspended corer can repeatedly penetrate the same sediment borehole guided by the lead ropes.[8]

Terrestrial sediments

The importance of eDNA analysis stemmed from the recognition of the limitations presented by culture-based studies.[5] Organisms have adapted to thrive in the specific conditions of their natural environments. Although scientists work to mimic these environments, many microbial organisms can not be removed and cultured in a laboratory setting.[6] The earliest version of this analysis began with ribosomal RNA (rRNA) in microbes to better understand microbes that live in hostile environments.[9] The genetic makeup of some microbes is then only accessible through eDNA analysis. Analytical techniques of eDNA were first applied to terrestrial sediments yielding DNA from both extinct and extant mammals, birds, insects and plants.[10] Samples extracted from these terrestrial sediments are commonly referenced as 'sedimentary ancient DNA' (sedaDNA or dirtDNA).[11] The eDNA analysis can also be used to study current forest communities including everything from birds and mammals to fungi and worms.[6]

Aquatic sediments

The sedaDNA was subsequently used to study ancient animal diversity and verified using known fossil records in aquatic sediments.[6] The aquatic sediments are deprived of oxygen and are thus protect the DNA from degrading.[6] Other than ancient studies, this approach can be used to understand current animal diversity with relatively high sensitivity. While typical water samples can have the DNA degrade relatively quickly, the aquatic sediment samples can have useful DNA two months after the species was present.[12] One problem with aquatic sediments is that it is unknown where the organism deposited the eDNA as it could have moved in the water column.

Aquatic (water column)

Studying eDNA in the water column can indicate the community composition of a body of water. Before eDNA, the main ways to study open water diversity was to use fishing and trapping, which requires resources such as funding and skilled labour, whereas eDNA only needs samples of water.[7] This method is effective as pH of the water does not affect the DNA as much as previously thought, and sensitivity can be increased relatively easily.[7][13] Sensitivity is how likely the DNA marker will be present in the sampled water, and can be increased simply by taking more samples, having bigger samples, and increasing PCR.[13] eDNA degrades relatively fast in the water column, which is very beneficial in short term conservation studies such as identifying what species are present.[6]

Researchers at the Experimental Lakes Area in Ontario, Canada and McGill University have found that eDNA distribution reflects lake stratification.[14] As seasons and water temperature change, water density also changes such that it forms distinct layers in small boreal lakes in the summer and winter. These layers mix during the spring and fall.[15] Fish habitat use correlates to stratification (e.g. a cold-water fish like lake trout will stay in cold water) and so does eDNA distribution, as these researchers found.[14]

Schematic of a drilling vessel recovering a sediment core for sedaDNA analysis and hypothetical past marine community composition. Schematic not to scale. [16]
Schematic of different methodological approaches in modern and ancient marine genomics. (a) Metabarcoding is the amplification and analysis of equally sized DNA fragments from a total DNA extract. (b) Metagenomics is the extraction, amplification, and analysis of all DNA fragments independent of size. (c) Target-capture describes the enrichment and analysis of specific (chosen) DNA fragments independent of size from a total DNA extract.[16]

In the diagram above on the left, the pink dashed line indicates the use of a chemical tracer for contamination tracking during coring. The white dashed line depicts the sediment core. Small yellow circles indicate theoretical sedaDNA sampling intervals, corresponding to pie charts on the right. Pie charts represent hypothetical paleo-communities detectable from sedaDNA shotgun analysis, where the majority (~75%) of the recovered sedaDNA sequences originate from bacteria, and where sedaDNA from fossilizing/cyst-forming taxa increases relative to non-fossilizing/non-cyst-forming taxa with subseafloor depth (assuming that sedaDNA of fossilizing/cyst-forming taxa preserves better than that of non-fossilizing/non-​cyst-forming taxa). The decreasing size of the pie charts with subseafloor depth indicates an expected decrease in sedaDNA.[16]

Monitoring species

eDNA can be used to monitor species throughout the year and can be very useful in conservation monitoring.[17][18] eDNA analysis has been successful at identifying many different taxa from aquatic plants,[19] fishes,[18] mussels,[17] fungi [20][21] and even parasites.[22][9] eDNA has been used to study species while minimizing any stress inducing human interaction, allowing researchers to monitor species presence at larger spatial scales more efficiently.[23][24] The most prevalent use in current research is using eDNA to study the locations of species at risk, invasive species, and keystone species across all environments.[23] eDNA is especially useful for studying species with small populations because eDNA is sensitive enough to confirm the presence of a species with relatively little effort to collect data which can often be done with a soil sample or water sample.[5][23] eDNA relies on the efficiency of genomic sequencing and analysis as well as the survey methods used which continue to become more efficient and cheaper.[25] Some studies have shown that eDNA sampled from stream and inshore environment decayed to undetectable level at within about 48 hours.[26][27]

Environmental DNA can be applied as a tool to detect low abundance organisms in both active and passive forms. Active eDNA surveys target individual species or groups of taxa for detection by using highly sensitive species-specific quantitative real-time PCR [28] or digital droplet PCR markers.[29] CRISPR-Cas methodology has also been applied to the detection of single species from eDNA;[30] utilising the Cas12a enzyme and allowing greater specificity when detecting sympatric taxa. Passive eDNA surveys employ massively-parallel DNA sequencing to amplify all eDNA molecules in a sample with no a priori target in mind providing blanket DNA evidence of biotic community composition.[31]

Commercial fisheries

The successful management of commercial fisheries relies on standardised surveys to estimate the quantity and distribution of fish stocks. Atlantic cod (Gadus morhua) is an iconic example that demonstrates how poorly constrained data and uninformed decision making can result in catastrophic stock decline and ensuing economic and social problems.[32] Traditional stock assessments of demersal fish species have relied primarily on trawl surveys, which have provided a valuable stream of information to decision makers.[33] However, there are some notable drawbacks of demersal trawl surveys including cost,[34] gear selectivity/catchability,[35] habitat destruction[36] and restricted coverage (e.g. hard-substrate bottom environments, marine protected areas).[37]

Environmental DNA (eDNA) has emerged as a potentially powerful alternative for studying ecosystem dynamics. The constant loss and shedding of genetic material from macrogranisms imparts a molecular footprint in environmental samples that can be analysed to determine either the presence of specific target species [38][39] or characterise biodiversity.[40][41] The combination of next generation sequencing and eDNA sampling has been successfully applied in aquatic systems to document spatial and temporal patterns in the diversity of fish fauna.[42][43][44][45] To further develop the utility of eDNA for fisheries management, understanding the ability of eDNA quantities to reflect fish biomass in the ocean is an important next step.[37]

Positive relationships between eDNA quantities and fish biomass and abundance have been demonstrated in experimental systems.[46][47][48] However, known variations between eDNA production [49][50] and degradation [51][52][53][54] rates is anticipated to complicate these relationships in natural systems. Furthermore, in oceanic systems, large habitat volumes and strong currents are likely to result in physical dispersal of DNA fragments away from target organisms.[55] These confounding factors have been previously considered to restrict the application of quantitative eDNA monitoring in oceanic settings.[56][37]

Despite these potential constraints, numerous studies in marine environments have found positive relationships between eDNA quantities and complimentary survey efforts including radio-tagging25, visual surveys13,26, echo-sounding27 and trawl surveys12,28. However, studies that quantify target eDNA concentrations of commercial fish species with standardised trawl surveys in marine environments are much scarcer28. In this context, direct comparisons of eDNA concentrations with biomass and stock assessment metrics, such as Catch Per Unit Effort (CPUE), are necessary to understand the applicability of eDNA monitoring to contribute to fisheries management efforts.[37]

Terrestrial arthropods

Terrestrial arthropods are experiencing massive decline in Europe as well as globally,[57][58][59][60] although only a fraction of the species have been assessed and the majority of insects are still undescribed to science.[61] As one example, grassland ecosystems are home to diverse taxonomic and functional groups of terrestrial arthropods, such as pollinators, phytophagous insects, and predators, that use nectar and pollen for food sources, and stem and leaf tissue for food and development. These communities harbor endangered species, since many habitats have disappeared or are under significant threat.[62][63] Therefore, extensive efforts are being conducted in order to restore European grassland ecosystems and conserve biodiversity.[64] For instance, pollinators like bees and butterflies represent an important ecological group that has undergone severe decline in Europe, indicating a dramatic loss of grassland biodiversity.[65][66][67][68] The vast majority of flowering plants are pollinated by insects and other animals both in temperate regions and the tropics.[69] The majority of insect species are herbivores feeding on different parts of plants, and most of these are specialists, relying on one or a few plant species as their main food resource.[70] However, given the gap in knowledge on existing insect species, and the fact that most species are still undescribed, it is clear that for the majority of plant species in the world, there is limited knowledge about the arthropod communities they harbor and interact with.[71]

Terrestrial arthropod communities have traditionally been collected and studied using methods, such as Malaise traps and pitfall traps, which are very effective but somewhat cumbersome and potentially invasive methods. In some instances, these techniques fall short of performing efficient and standardized surveys, due to, for example, phenotypic plasticity, closely related species, and difficulties in identifying juvenile stages. Furthermore, morphological identification depends directly on taxonomic expertise, which is in decline.[72][73][74] All such limitations of traditional biodiversity monitoring have created a demand for alternative approaches. Meanwhile, the advance in DNA sequencing technologies continuously provides new means of obtaining biological data.[75][76][77][78] Hence, several new molecular approaches have recently been suggested for obtaining fast and efficient data on arthropod communities and their interactions through non‐invasive genetic techniques. This includes extracting DNA from sources such as bulk samples or insect soups,[79][80][81][82] empty leaf mines,[83] spider webs,[84][85] pitcher plant fluid,[86] environmental samples like soil and water (environmental DNA [eDNA]),[87][88][89][90] host plant and predatory diet identification from insect DNA extracts,[91][92] and predator scat from bats.[93][94] Recently, also DNA from pollen attached to insects has been used for retrieving information on plant–pollinator interactions.[95][96] Many of such recent studies rely on DNA metabarcoding—high‐throughput sequencing of PCR amplicons using generic primers.[97][98][71]


Snow tracks

Wildlife researchers in snowy areas also use snow samples to gather and extract genetic information about species of interest. DNA from snow track samples has been used to confirm the presence of such elusive and rare species as polar bears, arctic fox, lynx, wolverines, and fishers.[99][100][101]

See also

References

  1. ^ Ficetola, Gentile Francesco; Miaud, Claude; Pompanon, François; Taberlet, Pierre (2008). "Species detection using environmental DNA from water samples". Biology Letters. 4 (4): 423–425. doi:10.1098/rsbl.2008.0118. ISSN 1744-9561. PMC 2610135. PMID 18400683.
  2. ^ "What is eDNA?". Freshwater Habitats Trust.
  3. ^ Thomsen, Philip Francis; Willerslev, Eske (2015). Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. ISBN 9781118169483. OCLC 937913966.
  4. ^ Fahner, Nicole (2016). "Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers". PLOS ONE. 11 (6): 1–16. doi:10.1371/journal.pone.0157505. ISSN 1932-6203. PMC 4911152. PMID 27310720 – via Directory of Open Access Journals.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ a b c Bohmann, Kristine; Evans, Alice; Gilbert, M. Thomas P.; Carvalho, Gary R.; Creer, Simon; Knapp, Michael; Yu, Douglas W.; de Bruyn, Mark (2014-06-01). "Environmental DNA for wildlife biology and biodiversity monitoring". Trends in Ecology & Evolution. 29 (6): 358–367. doi:10.1016/j.tree.2014.04.003. ISSN 1872-8383. PMID 24821515.
  6. ^ a b c d e f g Thomsen, Philip Francis; Willerslev, Eske (2015-03-01). "Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity". Biological Conservation. Special Issue: Environmental DNA: A powerful new tool for biological conservation. 183: 4–18. doi:10.1016/j.biocon.2014.11.019.
  7. ^ a b c Tsuji, Satsuki (2016). "Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples". Limnology. 18: 1–7. doi:10.1007/s10201-016-0483-x. ISSN 1439-8621. S2CID 44793881.
  8. ^ Gong; Fan; Li; Li; Zhang; Gromig; Smith; Dummann; Berger; Eisen; Tell; Biskaborn; Koglin; Wilhelms; Broy; Liu; Yang; Li; Liu; Talalay (2019). "Coring of Antarctic Subglacial Sediments". Journal of Marine Science and Engineering. 7 (6): 194. doi:10.3390/jmse7060194.{{cite journal}}: CS1 maint: unflagged free DOI (link) Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  9. ^ a b Bass, David (2015). "Diverse Applications of Environmental DNA Methods in Parasitology". Trends in Parasitology. 31 (10): 499–513. doi:10.1016/j.pt.2015.06.013. PMID 26433253.
  10. ^ Willerslev, Eske; Hansen, Anders J.; Binladen, Jonas; Brand, Tina B.; Gilbert, M. Thomas fP.; Shapiro, Beth; Bunce, Michael; Wiuf, Carsten; Gilichinsky, David A. (2003-05-02). "Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments". Science. 300 (5620): 791–795. Bibcode:2003Sci...300..791W. doi:10.1126/science.1084114. ISSN 0036-8075. PMID 12702808. S2CID 1222227.
  11. ^ Andersen, Kenneth; Bird, Karen Lise; Rasmussen, Morten; Haile, James; Breuning-Madsen, Henrik; Kjaer, Kurt H.; Orlando, Ludovic; Gilbert, M. Thomas P.; Willerslev, Eske (2012-04-01). "Meta-barcoding of 'dirt' DNA from soil reflects vertebrate biodiversity". Molecular Ecology. 21 (8): 1966–1979. doi:10.1111/j.1365-294X.2011.05261.x. ISSN 1365-294X. PMID 21917035. S2CID 43351435.
  12. ^ Turner, Cameron R. (2014). "Fish environmental DNA is more concentrated in aquatic sediments than surface water". Biological Conservation. 183: 93–102. doi:10.1016/j.biocon.2014.11.017. ISSN 0006-3207.
  13. ^ a b Schultz, Martin (2015). "Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)". PLOS ONE. 10 (10): 1–16. doi:10.1371/journal.pone.0141503. ISSN 1932-6203. PMC 4624909. PMID 26509674.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ a b Littlefair, Joanne E.; Hrenchuk, Lee E.; Blanchfield, Paul J.; Rennie, Michael D.; Cristescu, Melania E. (2020-04-26). "Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes". bioRxiv: 2020.04.21.042820. doi:10.1101/2020.04.21.042820. PMID 32888228. S2CID 218466213.
  15. ^ "How and Why Lakes Stratify and Turn Over: We explain the science". IISD Experimental Lakes Area. 2018-05-16. Retrieved 2020-07-14.
  16. ^ a b c Armbrecht, Linda (2020). "The Potential of Sedimentary Ancient DNA to Reconstruct Past Ocean Ecosystems". Oceanography. 33 (2). doi:10.5670/oceanog.2020.211. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  17. ^ a b Stoeckle, Bernhard (2016). "Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches?". Aquatic Conservation: Marine and Freshwater Ecosystems. 26 (6): 1120–1129. doi:10.1002/aqc.2611.
  18. ^ a b Souza, Lesley (2016). "Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms". PLOS ONE. 11 (10): 1–15. Bibcode:2016PLoSO..1165273D. doi:10.1371/journal.pone.0165273. ISSN 1932-6203. PMC 5077074. PMID 27776150.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Saeko, Matsuhashi (2016). "Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants". PLOS ONE. 11 (6): 1–14. Bibcode:2016PLoSO..1156217M. doi:10.1371/journal.pone.0156217. ISSN 1932-6203. PMC 4909283. PMID 27304876.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S.; Wijesundera, Ravi; Ruiz, Luis Villarreal; Vasco-Palacios, Aída M.; Thu, Pham Quang (2014-11-28). "Global diversity and geography of soil fungi" (PDF). Science. 346 (6213): 1256688. doi:10.1126/science.1256688. hdl:10447/102930. ISSN 0036-8075. PMID 25430773. S2CID 206559506.
  21. ^ Detheridge, Andrew Paul; Comont, David; Callaghan, Tony Martin; Bussell, Jennifer; Brand, Graham; Gwynn-Jones, Dylan; Scullion, John; Griffith, Gareth Wyn (June 2018). "Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites". Fungal Ecology. 33: 92–103. doi:10.1016/j.funeco.2018.02.002. ISSN 1754-5048.
  22. ^ Jones, Rhys Aled; Brophy, Peter M.; Davis, Chelsea N.; Davies, Teri E.; Emberson, Holly; Rees Stevens, Pauline; Williams, Hefin Wyn (2018-06-08). "Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control?". Parasites & Vectors. 11 (1): 342. doi:10.1186/s13071-018-2928-z. ISSN 1756-3305. PMC 5994096. PMID 29884202.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ a b c Bergman, Paul S.; Schumer, Gregg; Blankenship, Scott; Campbell, Elizabeth (2016). "Detection of Adult Green Sturgeon Using Environmental DNA Analysis". PLOS ONE. 11 (4): 1–8. Bibcode:2016PLoSO..1153500B. doi:10.1371/journal.pone.0153500. ISSN 1932-6203. PMC 4838217. PMID 27096433.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ "A Guide to Environmental DNA (eDNA) by Biomeme". Biomeme.
  25. ^ Wang, Xinkun (2016). Next-generation Sequencing Data Analysis. Boca Raton: CRC Press. ISBN 9781482217889. OCLC 940961529.
  26. ^ Seymour, Mathew; Durance, Isabelle; Cosby, Bernard J.; Ransom-Jones, Emma; Deiner, Kristy; Ormerod, Steve J.; Colbourne, John K.; Wilgar, Gregory; Carvalho, Gary R. (2018-01-22). "Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms". Communications Biology. 1 (1): 4. doi:10.1038/s42003-017-0005-3. ISSN 2399-3642. PMC 6123786. PMID 30271891.
  27. ^ Collins, Rupert A.; Wangensteen, Owen S.; O’Gorman, Eoin J.; Mariani, Stefano; Sims, David W.; Genner, Martin J. (2018-11-05). "Persistence of environmental DNA in marine systems". Communications Biology. 1 (1): 185. doi:10.1038/s42003-018-0192-6. ISSN 2399-3642. PMC 6218555. PMID 30417122.
  28. ^ "The TripleLock™ Platform - Precision Biomonitoriong". Environmental DNA Services. Retrieved 2019-02-12.
  29. ^ Hunter, Margaret E.; Dorazio, Robert M.; Butterfield, John S. S.; Meigs-Friend, Gaia; Nico, Leo G.; Ferrante, Jason A. (2016-11-20). "Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA". Molecular Ecology Resources. 17 (2): 221–229. doi:10.1111/1755-0998.12619. ISSN 1755-098X. PMID 27768244.
  30. ^ Williams, Molly-Ann; O'Grady, Joyce; Ball, Bernard; Carlsson, Jens; Eyto, Elvira de; McGinnity, Philip; Jennings, Eleanor; Regan, Fiona; Parle‐McDermott, Anne (2019). "The application of CRISPR-Cas for single species identification from environmental DNA". Molecular Ecology Resources. 19 (5): 1106–1114. doi:10.1111/1755-0998.13045. ISSN 1755-0998. PMID 31177615.
  31. ^ Opportunities in Ocean Sciences. Washington, D.C.: National Academies Press. 1998-01-01. doi:10.17226/9500. ISBN 9780309582926.
  32. ^ Walters, Carl; Maguire, Jean-Jacques (1996). "Lessons for stock assessment from the northern cod collapse". Reviews in Fish Biology and Fisheries. 6 (2). doi:10.1007/BF00182340. S2CID 20224324.
  33. ^ ICES (2018). "NEAFC request on updated advice for cod (Gadus morhua) in Subdivision 5.b.1 (Faroe Plateau)". doi:10.17895/ices.pub.4651. {{cite journal}}: Cite journal requires |journal= (help)
  34. ^ Heessen, Henk J. L.; Daan, Niels; Ellis, Jim R. (September 2015). Fish atlas of the Celtic Sea, North Sea, and Baltic Sea: Based on international research-vessel surveys. ISBN 9789086868780.
  35. ^ Pusceddu, A.; Bianchelli, S.; Martin, J.; Puig, P.; Palanques, A.; Masque, P.; Danovaro, R. (2014). "Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning". Proceedings of the National Academy of Sciences. 111 (24): 8861–8866. Bibcode:2014PNAS..111.8861P. doi:10.1073/pnas.1405454111. PMC 4066481. PMID 24843122.
  36. ^ Arreguin-sanchez, Francisco (1996). "Catchability: A key parameter for fish stock assessment". Reviews in Fish Biology and Fisheries. 6 (2). doi:10.1007/BF00182344. S2CID 9589700.
  37. ^ a b c d Salter, Ian; Joensen, Mourits; Kristiansen, Regin; Steingrund, Petur; Vestergaard, Poul (2019). "Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters". Communications Biology. 2: 461. doi:10.1038/s42003-019-0696-8. PMC 6904555. PMID 31840106. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  38. ^ Ficetola, Gentile Francesco; Miaud, Claude; Pompanon, François; Taberlet, Pierre (2008). "Species detection using environmental DNA from water samples". Biology Letters. 4 (4): 423–425. doi:10.1098/rsbl.2008.0118. PMC 2610135. PMID 18400683.
  39. ^ Goldberg, Caren S.; Pilliod, David S.; Arkle, Robert S.; Waits, Lisette P. (2011). "Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders". PLOS ONE. 6 (7): e22746. Bibcode:2011PLoSO...622746G. doi:10.1371/journal.pone.0022746. PMC 3144250. PMID 21818382.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  40. ^ Valentini, Alice; Taberlet, Pierre; Miaud, Claude; Civade, Raphaël; Herder, Jelger; Thomsen, Philip Francis; Bellemain, Eva; Besnard, Aurélien; Coissac, Eric; Boyer, Frédéric; Gaboriaud, Coline; Jean, Pauline; Poulet, Nicolas; Roset, Nicolas; Copp, Gordon H.; Geniez, Philippe; Pont, Didier; Argillier, Christine; Baudoin, Jean-Marc; Peroux, Tiphaine; Crivelli, Alain J.; Olivier, Anthony; Acqueberge, Manon; Le Brun, Matthieu; Møller, Peter R.; Willerslev, Eske; Dejean, Tony (2016). "Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding" (PDF). Molecular Ecology. 25 (4): 929–942. doi:10.1111/mec.13428. PMID 26479867. S2CID 2801412.
  41. ^ Goodwin, Kelly D.; Thompson, Luke R.; Duarte, Bernardo; Kahlke, Tim; Thompson, Andrew R.; Marques, João C.; Caçador, Isabel (2017). "DNA Sequencing as a Tool to Monitor Marine Ecological Status". Frontiers in Marine Science. 4. doi:10.3389/fmars.2017.00107. S2CID 27034312.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  42. ^ Stoeckle, Mark Y.; Soboleva, Lyubov; Charlop-Powers, Zachary (2017). "Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary". PLOS ONE. 12 (4): e0175186. Bibcode:2017PLoSO..1275186S. doi:10.1371/journal.pone.0175186. PMC 5389620. PMID 28403183.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  43. ^ Thomsen, Philip Francis; Kielgast, Jos; Iversen, Lars Lønsmann; Møller, Peter Rask; Rasmussen, Morten; Willerslev, Eske (2012). "Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples". PLOS ONE. 7 (8): e41732. Bibcode:2012PLoSO...741732T. doi:10.1371/journal.pone.0041732. PMC 3430657. PMID 22952584.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  44. ^ Thomsen, Philip Francis; Møller, Peter Rask; Sigsgaard, Eva Egelyng; Knudsen, Steen Wilhelm; Jørgensen, Ole Ankjær; Willerslev, Eske (2016). "Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes". PLOS ONE. 11 (11): e0165252. Bibcode:2016PLoSO..1165252T. doi:10.1371/journal.pone.0165252. PMC 5112899. PMID 27851757.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  45. ^ Sigsgaard, Eva Egelyng; Nielsen, Ida Broman; Carl, Henrik; Krag, Marcus Anders; Knudsen, Steen Wilhelm; Xing, Yingchun; Holm-Hansen, Tore Hejl; Møller, Peter Rask; Thomsen, Philip Francis (2017). "Seawater environmental DNA reflects seasonality of a coastal fish community". Marine Biology. 164 (6). doi:10.1007/s00227-017-3147-4. S2CID 89773962.
  46. ^ Takahara, Teruhiko; Minamoto, Toshifumi; Yamanaka, Hiroki; Doi, Hideyuki; Kawabata, Zen'Ichiro (2012). "Estimation of Fish Biomass Using Environmental DNA". PLOS ONE. 7 (4): e35868. Bibcode:2012PLoSO...735868T. doi:10.1371/journal.pone.0035868. PMC 3338542. PMID 22563411.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  47. ^ Doi, Hideyuki; Uchii, Kimiko; Takahara, Teruhiko; Matsuhashi, Saeko; Yamanaka, Hiroki; Minamoto, Toshifumi (2015). "Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys". PLOS ONE. 10 (3): e0122763. Bibcode:2015PLoSO..1022763D. doi:10.1371/journal.pone.0122763. PMC 4370432. PMID 25799582.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  48. ^ Lacoursière-Roussel, Anaïs; Rosabal, Maikel; Bernatchez, Louis (2016). "Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions". Molecular Ecology Resources. 16 (6): 1401–1414. doi:10.1111/1755-0998.12522. PMID 26946353. S2CID 4507565.
  49. ^ Maruyama, Atsushi; Nakamura, Keisuke; Yamanaka, Hiroki; Kondoh, Michio; Minamoto, Toshifumi (2014). "The Release Rate of Environmental DNA from Juvenile and Adult Fish". PLOS ONE. 9 (12): e114639. Bibcode:2014PLoSO...9k4639M. doi:10.1371/journal.pone.0114639. PMC 4257714. PMID 25479160.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  50. ^ Klymus, Katy E.; Richter, Catherine A.; Chapman, Duane C.; Paukert, Craig (2015). "Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix". Biological Conservation. 183: 77–84. doi:10.1016/j.biocon.2014.11.020.
  51. ^ Li, Jianlong; Lawson Handley, Lori J.; Harper, Lynsey R.; Brys, Rein; Watson, Hayley V.; Di Muri, Cristina; Zhang, Xiang; Hänfling, Bernd (2019). "Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding". Environmental DNA. 1 (3): 238–250. doi:10.1002/edn3.24.
  52. ^ Salter, Ian (2018). "Seasonal variability in the persistence of dissolved environmental DNA (EDNA) in a marine system: The role of microbial nutrient limitation". PLOS ONE. 13 (2): e0192409. Bibcode:2018PLoSO..1392409S. doi:10.1371/journal.pone.0192409. PMC 5825020. PMID 29474423.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  53. ^ Buxton, Andrew S.; Groombridge, Jim J.; Griffiths, Richard A. (2018). "Seasonal variation in environmental DNA detection in sediment and water samples". PLOS ONE. 13 (1): e0191737. Bibcode:2018PLoSO..1391737B. doi:10.1371/journal.pone.0191737. PMC 5774844. PMID 29352294.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  54. ^ Collins, Rupert A.; Wangensteen, Owen S.; o'Gorman, Eoin J.; Mariani, Stefano; Sims, David W.; Genner, Martin J. (2018). "Persistence of environmental DNA in marine systems". Communications Biology. 1: 185. doi:10.1038/s42003-018-0192-6. PMC 6218555. PMID 30417122.
  55. ^ Andruszkiewicz, Elizabeth A.; Koseff, Jeffrey R.; Fringer, Oliver B.; Ouellette, Nicholas T.; Lowe, Anna B.; Edwards, Christopher A.; Boehm, Alexandria B. (2019). "Modeling Environmental DNA Transport in the Coastal Ocean Using Lagrangian Particle Tracking". Frontiers in Marine Science. 6. doi:10.3389/fmars.2019.00477. S2CID 199447701.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  56. ^ Andruszkiewicz, Elizabeth A.; Koseff, Jeffrey R.; Fringer, Oliver B.; Ouellette, Nicholas T.; Lowe, Anna B.; Edwards, Christopher A.; Boehm, Alexandria B. (2019). "Modeling Environmental DNA Transport in the Coastal Ocean Using Lagrangian Particle Tracking". Frontiers in Marine Science. 6. doi:10.3389/fmars.2019.00477. S2CID 199447701.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  57. ^ Collen, Ben; (Zoologist), Monika Böhm; Kemp, Rachael; Baillie, Jonathan (2012). Spineless: Status and Trends of the World's Invertebrates. ISBN 9780900881701.
  58. ^ Dirzo, R.; Young, H. S.; Galetti, M.; Ceballos, G.; Isaac, N. J. B.; Collen, B. (2014). "Defaunation in the Anthropocene" (PDF). Science. 345 (6195): 401–406. Bibcode:2014Sci...345..401D. doi:10.1126/science.1251817. PMID 25061202. S2CID 206555761.
  59. ^ European Red List of Bees. 2014. ISBN 9789279445125.
  60. ^ Swaay, Chris van (2010). European Red List of Butterflies. ISBN 9789279141515.
  61. ^ Stork, Nigel E. (2018). "How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?". Annual Review of Entomology. 63: 31–45. doi:10.1146/annurev-ento-020117-043348. PMID 28938083.
  62. ^ Habel, Jan Christian; Dengler, Jürgen; Janišová, Monika; Török, Péter; Wellstein, Camilla; Wiezik, Michal (2013). "European grassland ecosystems: Threatened hotspots of biodiversity". Biodiversity and Conservation. 22 (10): 2131–2138. doi:10.1007/s10531-013-0537-x. S2CID 15901140.
  63. ^ Joern, Anthony; Laws, Angela N. (2013). "Ecological Mechanisms Underlying Arthropod Species Diversity in Grasslands". Annual Review of Entomology. 58: 19–36. doi:10.1146/annurev-ento-120811-153540. PMID 22830354.
  64. ^ Silva, João Pedro (2008). LIFE and Europe's Grasslands: Restoring a Forgotten Habitat. ISBN 9789279101595.
  65. ^ Biesmeijer, J. C.; Roberts, S. P.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A. P.; Potts, S. G.; Kleukers, R.; Thomas, C. D.; Settele, J.; Kunin, W. E. (2006). "Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands". Science. 313 (5785): 351–354. Bibcode:2006Sci...313..351B. doi:10.1126/science.1127863. PMID 16857940. S2CID 16273738.
  66. ^ Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E. L. (2015). "Bee declines driven by combined stress from parasites, pesticides, and lack of flowers". Science. 347 (6229). doi:10.1126/science.1255957. PMID 25721506. S2CID 206558985.
  67. ^ Potts, Simon G.; Biesmeijer, Jacobus C.; Kremen, Claire; Neumann, Peter; Schweiger, Oliver; Kunin, William E. (2010). "Global pollinator declines: Trends, impacts and drivers". Trends in Ecology & Evolution. 25 (6): 345–353. doi:10.1016/j.tree.2010.01.007. PMID 20188434.
  68. ^ European Environment Agency (2013). "The European grassland butterfly indicator: 1990–2011". Publications Office. doi:10.2800/89760. {{cite journal}}: Cite journal requires |journal= (help)
  69. ^ Ollerton, Jeff; Winfree, Rachael; Tarrant, Sam (2011). "How many flowering plants are pollinated by animals?". Oikos. 120 (3): 321–326. doi:10.1111/j.1600-0706.2010.18644.x.
  70. ^ Price, Peter W.; Denno, Robert F.; Eubanks, Micky D.; Finke, Deborah L.; Kaplan, Ian (2011). Insect Ecology. doi:10.1017/CBO9780511975387. ISBN 9780511975387.
  71. ^ a b Thomsen, Philip Francis; Sigsgaard, Eva E. (2019). "Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods". Ecology and Evolution. 9 (4): 1665–1679. doi:10.1002/ece3.4809. PMID 30847063. S2CID 71143282. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  72. ^ Hopkins, G. W.; Freckleton, R. P. (2002). "Declines in the numbers of amateur and professional taxonomists: Implications for conservation". Animal Conservation. 5 (3): 245–249. doi:10.1017/S1367943002002299.
  73. ^ Sangster, George; Luksenburg, Jolanda A. (2015). "Declining Rates of Species Described per Taxonomist: Slowdown of Progress or a Side-effect of Improved Quality in Taxonomy?". Systematic Biology. 64 (1): 144–151. doi:10.1093/sysbio/syu069. PMID 25190593.
  74. ^ Wheeler, Q. D.; Raven, P. H.; Wilson, E. O. (2004). "Taxonomy: Impediment or Expedient?". Science. 303 (5656): 285. doi:10.1126/science.303.5656.285. PMID 14726557. S2CID 27481787.
  75. ^ Bohmann, Kristine; Evans, Alice; Gilbert, M. Thomas P.; Carvalho, Gary R.; Creer, Simon; Knapp, Michael; Yu, Douglas W.; De Bruyn, Mark (2014). "Environmental DNA for wildlife biology and biodiversity monitoring". Trends in Ecology & Evolution. 29 (6): 358–367. doi:10.1016/j.tree.2014.04.003. PMID 24821515.
  76. ^ Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A.; Dawson, Terence P.; Emerson, Brent C.; Ferrier, Simon; Gilbert, M. Thomas P.; Herold, Martin; Jones, Laurence; Leendertz, Fabian H.; Matthews, Louise; Millington, James D. A.; Olson, John R.; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W.; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P.; White, Piran C. L.; et al. (2017). "Connecting Earth observation to high-throughput biodiversity data" (PDF). Nature Ecology & Evolution. 1 (7): 176. doi:10.1038/s41559-017-0176. PMID 28812589. S2CID 205564094.
  77. ^ Creer, Simon; Deiner, Kristy; Frey, Serita; Porazinska, Dorota; Taberlet, Pierre; Thomas, W. Kelley; Potter, Caitlin; Bik, Holly M. (2016). "The ecologist's field guide to sequence‐based identification of biodiversity". Methods in Ecology and Evolution. 7 (9): 1008–1018. doi:10.1111/2041-210X.12574.
  78. ^ Thomsen, Philip Francis; Willerslev, Eske (2015). "Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity". Biological Conservation. 183: 4–18. doi:10.1016/j.biocon.2014.11.019.
  79. ^ Arribas, Paula; Andújar, Carmelo; Hopkins, Kevin; Shepherd, Matthew; Vogler, Alfried P. (2016). "Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil". Methods in Ecology and Evolution. 7 (9): 1071–1081. doi:10.1111/2041-210X.12557.
  80. ^ Elbrecht, Vasco; Taberlet, Pierre; Dejean, Tony; Valentini, Alice; Usseglio-Polatera, Philippe; Beisel, Jean-Nicolas; Coissac, Eric; Boyer, Frederic; Leese, Florian (2016). "Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects". PeerJ. 4: e1966. doi:10.7717/peerj.1966. PMC 4841222. PMID 27114891.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  81. ^ Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J. (2011). "Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos". PLOS ONE. 6 (4): e17497. Bibcode:2011PLoSO...617497H. doi:10.1371/journal.pone.0017497. PMC 3076369. PMID 21533287.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  82. ^ Xu, Charles C. Y.; Yen, Ivy J.; Bowman, Dean; Turner, Cameron R. (2015). "Spider Web DNA: A New Spin on Noninvasive Genetics of Predator and Prey". PLOS ONE. 10 (11): e0142503. Bibcode:2015PLoSO..1042503X. doi:10.1371/journal.pone.0142503. PMC 4659541. PMID 26606730. S2CID 5331545.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  83. ^ Derocles, Stéphane A. P.; Evans, Darren M.; Nichols, Paul C.; Evans, S. Aifionn; Lunt, David H. (2015). "Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach". PLOS ONE. 10 (2): e0117872. Bibcode:2015PLoSO..1017872D. doi:10.1371/journal.pone.0117872. PMC 4339730. PMID 25710377.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  84. ^ Blake, Max; McKeown, Niall J.; Bushell, Mark L. T.; Shaw, Paul W. (2016). "DNA extraction from spider webs". Conservation Genetics Resources. 8 (3): 219–221. doi:10.1007/s12686-016-0537-8. S2CID 15122457.
  85. ^ Blake, Max; McKeown, Niall J.; Bushell, Mark L. T.; Shaw, Paul W. (2016). "DNA extraction from spider webs". Conservation Genetics Resources. 8 (3): 219–221. doi:10.1007/s12686-016-0537-8. S2CID 15122457.
  86. ^ Bittleston, Leonora S.; Baker, Christopher C. M.; Strominger, Lila B.; Pringle, Anne; Pierce, Naomi E. (2016). "Metabarcoding as a tool for investigating arthropod diversity in Nepenthespitcher plants". Austral Ecology. 41 (2): 120–132. doi:10.1111/aec.12271.
  87. ^ Taberlet, Pierre; Coissac, Eric; Hajibabaei, Mehrdad; Rieseberg, Loren H. (2012). "Environmental DNA". Molecular Ecology. 21 (8): 1789–1793. doi:10.1111/j.1365-294X.2012.05542.x. PMID 22486819. S2CID 3961830.
  88. ^ Thomsen, Philip Francis; Kielgast, JOS; Iversen, Lars L.; Wiuf, Carsten; Rasmussen, Morten; Gilbert, M. Thomas P.; Orlando, Ludovic; Willerslev, Eske (2012). "Monitoring endangered freshwater biodiversity using environmental DNA". Molecular Ecology. 21 (11): 2565–2573. doi:10.1111/j.1365-294X.2011.05418.x. PMID 22151771.
  89. ^ Thomsen, Philip Francis; Willerslev, Eske (2015). "Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity". Biological Conservation. 183: 4–18. doi:10.1016/j.biocon.2014.11.019.
  90. ^ Zinger, Lucie; Taberlet, Pierre; Schimann, Heidy; Bonin, Aurélie; Boyer, Frédéric; De Barba, Marta; Gaucher, Philippe; Gielly, Ludovic; Giguet‐Covex, Charline; Iribar, Amaia; Réjou‐Méchain, Maxime; Rayé, Gilles; Rioux, Delphine; Schilling, Vincent; Tymen, Blaise; Viers, Jérôme; Zouiten, Cyril; Thuiller, Wilfried; Coissac, Eric; Chave, Jérôme (2019). "Body size determines soil community assembly in a tropical forest". Molecular Ecology. 28 (3): 528–543. doi:10.1111/mec.14919. PMID 30375061.
  91. ^ Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M; Petitpierre, Eduard; Gómez-Zurita, Jesús (2009). "DNA barcoding insect–host plant associations". Proceedings of the Royal Society B: Biological Sciences. 276 (1657): 639–648. doi:10.1098/rspb.2008.1264. PMC 2660938. PMID 19004756.
  92. ^ Paula, Débora P.; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J. T. N.; Sujii, Edison R.; Pires, Carmen S. S.; Souza, Lucas M.; Andow, David A.; Vogler, Alfried P. (2016). "Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents". PLOS ONE. 11 (9): e0161841. Bibcode:2016PLoSO..1161841P. doi:10.1371/journal.pone.0161841. PMC 5021305. PMID 27622637.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  93. ^ Bohmann, Kristine; Monadjem, Ara; Lehmkuhl Noer, Christina; Rasmussen, Morten; Zeale, Matt R. K.; Clare, Elizabeth; Jones, Gareth; Willerslev, Eske; Gilbert, M. Thomas P. (2011). "Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing". PLOS ONE. 6 (6): e21441. Bibcode:2011PLoSO...621441B. doi:10.1371/journal.pone.0021441. PMC 3120876. PMID 21731749.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  94. ^ Vesterinen, Eero J.; Lilley, Thomas; Laine, Veronika N.; Wahlberg, Niklas (2013). "Next Generation Sequencing of Fecal DNA Reveals the Dietary Diversity of the Widespread Insectivorous Predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland". PLOS ONE. 8 (11): e82168. Bibcode:2013PLoSO...882168V. doi:10.1371/journal.pone.0082168. PMC 3842304. PMID 24312405.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  95. ^ Bell, Karen L.; Fowler, Julie; Burgess, Kevin S.; Dobbs, Emily K.; Gruenewald, David; Lawley, Brice; Morozumi, Connor; Brosi, Berry J. (2017). "Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions". Applications in Plant Sciences. 5 (6). doi:10.3732/apps.1600124. PMC 5499302. PMID 28690929. S2CID 6590244.
  96. ^ Pornon, André; Escaravage, Nathalie; Burrus, Monique; Holota, Hélène; Khimoun, Aurélie; Mariette, Jérome; Pellizzari, Charlène; Iribar, Amaia; Etienne, Roselyne; Taberlet, Pierre; Vidal, Marie; Winterton, Peter; Zinger, Lucie; Andalo, Christophe (2016). "Using metabarcoding to reveal and quantify plant-pollinator interactions". Scientific Reports. 6: 27282. Bibcode:2016NatSR...627282P. doi:10.1038/srep27282. PMC 4891682. PMID 27255732.
  97. ^ Taberlet, Pierre; Bonin, Aurélie; Zinger, Lucie; Coissac, Eric (2018). doi:10.1093/oso/9780198767220.001.0001. ISBN 9780198767220. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  98. ^ Taberlet, Pierre; Coissac, Eric; Hajibabaei, Mehrdad; Rieseberg, Loren H. (2012). "Environmental DNA". Molecular Ecology. 21 (8): 1789–1793. doi:10.1111/j.1365-294X.2012.05542.x. PMID 22486819. S2CID 3961830.
  99. ^ "WWF's Arnaud Lyet on measuring wildlife populations". World Wildlife Fund. Retrieved 2018-11-26.
  100. ^ "eDNA – Not just for fisheries biologists anymore". wildlife.org. 2017-12-08. Retrieved 2018-11-26.
  101. ^ Roth, Annie (2018-11-19). "How DNA from snow helps scientists track elusive animals". National Geographic. Retrieved 2018-11-26.

External links