Waterlogging (agriculture): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Mobile edit Mobile web edit
No edit summary
Line 8: Line 8:
'''Waterlogging''' water is the saturation of [[soil]] with [[water]].<ref>{{Cite web|url=https://en.oxforddictionaries.com/definition/waterlog|title=waterlog - definition of waterlog in English {{!}} Oxford Dictionaries|website=Oxford Dictionaries {{!}} English|access-date=2017-03-10}}</ref> Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of [[mesophyte]]s suffer, and the subsurface [[reducing atmosphere]] leads to such processes as [[denitrification]], [[methanogenesis]], and the reduction of iron and manganese oxides.<ref>{{Cite book|title=Introduction to Environmental Soil Physics|url=https://archive.org/details/introductiontoen00hill_278|url-access=limited|last=Hillel|first=Daniel|publisher=Elsevier Academic Press|year=2004|isbn=0-12-348655-6|location=United States of America|pages=[https://archive.org/details/introductiontoen00hill_278/page/n457 441]}}</ref>
'''Waterlogging''' water is the saturation of [[soil]] with [[water]].<ref>{{Cite web|url=https://en.oxforddictionaries.com/definition/waterlog|title=waterlog - definition of waterlog in English {{!}} Oxford Dictionaries|website=Oxford Dictionaries {{!}} English|access-date=2017-03-10}}</ref> Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of [[mesophyte]]s suffer, and the subsurface [[reducing atmosphere]] leads to such processes as [[denitrification]], [[methanogenesis]], and the reduction of iron and manganese oxides.<ref>{{Cite book|title=Introduction to Environmental Soil Physics|url=https://archive.org/details/introductiontoen00hill_278|url-access=limited|last=Hillel|first=Daniel|publisher=Elsevier Academic Press|year=2004|isbn=0-12-348655-6|location=United States of America|pages=[https://archive.org/details/introductiontoen00hill_278/page/n457 441]}}</ref>


All plants, including [[crop]]s require [[Earth's atmosphere|air]] (specifically, [[oxygen]]) to respire, produce energy and keep their cells alive. In agriculture, waterlogging of the soil typically blocks air from getting in to the roots.<ref>{{cite journal |last1=Sasidharan |first1=Rashmi |last2=Hartman |first2=Sjon |last3=Liu |first3=Zeguang |last4=Martopawiro |first4=Shanice |last5=Sajeev |first5=Nikita |last6=van Veen |first6=Hans |last7=Yeung |first7=Elaine |last8=Voesenek |first8=Laurentius A. C. J. |title=Signal Dynamics and Interactions during Flooding Stress |journal=Plant Physiology |date=February 2018 |volume=176 |issue=2 |pages=1106–1117 |doi=10.1104/pp.17.01232}}</ref> With the exception of [[rice]] (''Oryza sativa''),<ref>{{cite journal |last1=Hattori |first1=Yoko |last2=Nagai |first2=Keisuke |last3=Furukawa |first3=Shizuka |last4=Song |first4=Xian-Jun |last5=Kawano |first5=Ritsuko |last6=Sakakibara |first6=Hitoshi |last7=Wu |first7=Jianzhong |last8=Matsumoto |first8=Takashi |last9=Yoshimura |first9=Atsushi |last10=Kitano |first10=Hidemi |last11=Matsuoka |first11=Makoto |last12=Mori |first12=Hitoshi |last13=Ashikari |first13=Motoyuki |title=The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water |journal=Nature |date=August 2009 |volume=460 |issue=7258 |pages=1026–1030 |doi=10.1038/nature08258}}</ref><ref>{{cite journal |last1=Xu |first1=Kenong |last2=Xu |first2=Xia |last3=Fukao |first3=Takeshi |last4=Canlas |first4=Patrick |last5=Maghirang-Rodriguez |first5=Reycel |last6=Heuer |first6=Sigrid |last7=Ismail |first7=Abdelbagi M. |last8=Bailey-Serres |first8=Julia |last9=Ronald |first9=Pamela C. |last10=Mackill |first10=David J. |title=Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice |journal=Nature |date=August 2006 |volume=442 |issue=7103 |pages=705–708 |doi=10.1038/nature04920}}</ref> most [[crop]]s like [[maize]] and [[potato]],<ref>{{cite journal |last1=Sanclemente |first1=Maria-Angelica |last2=Ma |first2=Fangfang |last3=Liu |first3=Peng |last4=Della Porta |first4=Adriana |last5=Singh |first5=Jugpreet |last6=Wu |first6=Shan |last7=Colquhoun |first7=Thomas |last8=Johnson |first8=Timothy |last9=Guan |first9=Jiahn-Chou |last10=Koch |first10=Karen E |title=Sugar modulation of anaerobic-response networks in maize root tips |journal=Plant Physiology |date=15 March 2021 |volume=185 |issue=2 |pages=295–317 |doi=10.1093/plphys/kiaa029}}</ref><ref>{{cite journal |last1=Hartman |first1=Sjon |title=Averting a sweet demise: sugars change the transcriptional hypoxia response in maize roots |journal=Plant Physiology |date=15 March 2021 |volume=185 |issue=2 |pages=280–281 |doi=10.1093/plphys/kiaa053}}</ref><ref>{{cite journal |last1=Hartman |first1=Sjon |last2=van Dongen |first2=Nienke |last3=Renneberg |first3=Dominique M.H.J. |last4=Welschen-Evertman |first4=Rob A.M. |last5=Kociemba |first5=Johanna |last6=Sasidharan |first6=Rashmi |last7=Voesenek |first7=Laurentius A.C.J. |title=Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species |journal=Plants |date=13 August 2020 |volume=9 |issue=8 |pages=1022 |doi=10.3390/plants9081022}}</ref> are therefore highly intolerant to waterlogging. Plant [[Cell (biology)|cell]]s use a variety of signals such the oxygen concentration,<ref>{{cite journal |last1=Gibbs |first1=Daniel J. |last2=Lee |first2=Seung Cho |last3=Md Isa |first3=Nurulhikma |last4=Gramuglia |first4=Silvia |last5=Fukao |first5=Takeshi |last6=Bassel |first6=George W. |last7=Correia |first7=Cristina Sousa |last8=Corbineau |first8=Françoise |last9=Theodoulou |first9=Frederica L. |last10=Bailey-Serres |first10=Julia |last11=Holdsworth |first11=Michael J. |title=Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants |journal=Nature |date=November 2011 |volume=479 |issue=7373 |pages=415–418 |doi=10.1038/nature10534}}</ref> plant [[hormone]]s like [[ethylene]],<ref>{{cite journal |last1=Hartman |first1=Sjon |last2=Sasidharan |first2=Rashmi |last3=Voesenek |first3=Laurentius A. C. J. |title=The role of ethylene in metabolic acclimations to low oxygen |journal=New Phytologist |date=January 2021 |volume=229 |issue=1 |pages=64–70 |doi=10.1111/nph.16378}}</ref><ref>{{cite journal |last1=Liu |first1=Zeguang |last2=Hartman |first2=Sjon |last3=van Veen |first3=Hans |last4=Zhang |first4=Hongtao |last5=Leeggangers |first5=Hendrika A.C.F. |last6=Martopawiro |first6=Shanice |last7=Bosman |first7=Femke |last8=de Deugd |first8=Florian |last9=Su |first9=Peng |last10=Hummel |first10=Maureen |last11=Rankenberg |first11=Tom |last12=Hassall |first12=Kirsty L. |last13=Bailey-Serres |first13=Julia |last14=Theodoulou |first14=Frederica L. |last15=Voesenek |first15=Laurentius A.C.J. |last16=Sasidharan |first16=Rashmi |title=Ethylene augments root hypoxia tolerance through amelioration of reactive oxygen species and growth cessation |journal=bioRxiv |date=23 January 2022 |doi=10.1101/2022.01.21.477196}}</ref> energy and sugar status<ref>{{cite journal |last1=Cho |first1=Hsing‐Yi |last2=Loreti |first2=Elena |last3=Shih |first3=Ming‐Che |last4=Perata |first4=Pierdomenico |title=Energy and sugar signaling during hypoxia |journal=New Phytologist |date=January 2021 |volume=229 |issue=1 |pages=57–63 |doi=10.1111/nph.16326}}</ref><ref>{{cite journal |last1=Schmidt |first1=Romy R. |last2=Fulda |first2=Martin |last3=Paul |first3=Melanie V. |last4=Anders |first4=Max |last5=Plum |first5=Frederic |last6=Weits |first6=Daniel A. |last7=Kosmacz |first7=Monika |last8=Larson |first8=Tony R. |last9=Graham |first9=Ian A. |last10=Beemster |first10=Gerrit T. S. |last11=Licausi |first11=Francesco |last12=Geigenberger |first12=Peter |last13=Schippers |first13=Jos H. |last14=van Dongen |first14=Joost T. |title=Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis |journal=Proceedings of the National Academy of Sciences |date=18 December 2018 |volume=115 |issue=51 |pages=E12101–E12110 |doi=10.1073/pnas.1809429115}}</ref> to acclimate to waterlogging-induced oxygen deprivation.
All plants, including [[crop]]s require [[Earth's atmosphere|air]] (specifically, [[oxygen]]) to respire, produce energy and keep their cells alive. In agriculture, waterlogging of the soil typically blocks air from getting in to the roots.<ref>{{cite journal |last1=Sasidharan |first1=Rashmi |last2=Hartman |first2=Sjon |last3=Liu |first3=Zeguang |last4=Martopawiro |first4=Shanice |last5=Sajeev |first5=Nikita |last6=van Veen |first6=Hans |last7=Yeung |first7=Elaine |last8=Voesenek |first8=Laurentius A. C. J. |title=Signal Dynamics and Interactions during Flooding Stress |journal=Plant Physiology |date=February 2018 |volume=176 |issue=2 |pages=1106–1117 |doi=10.1104/pp.17.01232}}</ref> With the exception of [[rice]] (''Oryza sativa''),<ref>{{cite journal |last1=Hattori |first1=Yoko |last2=Nagai |first2=Keisuke |last3=Furukawa |first3=Shizuka |last4=Song |first4=Xian-Jun |last5=Kawano |first5=Ritsuko |last6=Sakakibara |first6=Hitoshi |last7=Wu |first7=Jianzhong |last8=Matsumoto |first8=Takashi |last9=Yoshimura |first9=Atsushi |last10=Kitano |first10=Hidemi |last11=Matsuoka |first11=Makoto |last12=Mori |first12=Hitoshi |last13=Ashikari |first13=Motoyuki |title=The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water |journal=Nature |date=August 2009 |volume=460 |issue=7258 |pages=1026–1030 |doi=10.1038/nature08258}}</ref><ref>{{cite journal |last1=Xu |first1=Kenong |last2=Xu |first2=Xia |last3=Fukao |first3=Takeshi |last4=Canlas |first4=Patrick |last5=Maghirang-Rodriguez |first5=Reycel |last6=Heuer |first6=Sigrid |last7=Ismail |first7=Abdelbagi M. |last8=Bailey-Serres |first8=Julia |last9=Ronald |first9=Pamela C. |last10=Mackill |first10=David J. |title=Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice |journal=Nature |date=August 2006 |volume=442 |issue=7103 |pages=705–708 |doi=10.1038/nature04920}}</ref> most [[crop]]s like [[maize]] and [[potato]],<ref>{{cite journal |last1=Sanclemente |first1=Maria-Angelica |last2=Ma |first2=Fangfang |last3=Liu |first3=Peng |last4=Della Porta |first4=Adriana |last5=Singh |first5=Jugpreet |last6=Wu |first6=Shan |last7=Colquhoun |first7=Thomas |last8=Johnson |first8=Timothy |last9=Guan |first9=Jiahn-Chou |last10=Koch |first10=Karen E |title=Sugar modulation of anaerobic-response networks in maize root tips |journal=Plant Physiology |date=15 March 2021 |volume=185 |issue=2 |pages=295–317 |doi=10.1093/plphys/kiaa029}}</ref><ref>{{cite journal |last1=Hartman |first1=Sjon |title=Averting a sweet demise: sugars change the transcriptional hypoxia response in maize roots |journal=Plant Physiology |date=15 March 2021 |volume=185 |issue=2 |pages=280–281 |doi=10.1093/plphys/kiaa053}}</ref><ref>{{cite journal |last1=Hartman |first1=Sjon |last2=van Dongen |first2=Nienke |last3=Renneberg |first3=Dominique M.H.J. |last4=Welschen-Evertman |first4=Rob A.M. |last5=Kociemba |first5=Johanna |last6=Sasidharan |first6=Rashmi |last7=Voesenek |first7=Laurentius A.C.J. |title=Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species |journal=Plants |date=13 August 2020 |volume=9 |issue=8 |pages=1022 |doi=10.3390/plants9081022}}</ref> are therefore highly intolerant to waterlogging. Plant [[Cell (biology)|cell]]s use a variety of signals such the oxygen concentration,<ref>{{cite journal |last1=Gibbs |first1=Daniel J. |last2=Lee |first2=Seung Cho |last3=Md Isa |first3=Nurulhikma |last4=Gramuglia |first4=Silvia |last5=Fukao |first5=Takeshi |last6=Bassel |first6=George W. |last7=Correia |first7=Cristina Sousa |last8=Corbineau |first8=Françoise |last9=Theodoulou |first9=Frederica L. |last10=Bailey-Serres |first10=Julia |last11=Holdsworth |first11=Michael J. |title=Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants |journal=Nature |date=November 2011 |volume=479 |issue=7373 |pages=415–418 |doi=10.1038/nature10534}}</ref> plant [[hormone]]s like [[ethylene]],<ref>{{cite journal |last1=Hartman |first1=Sjon |last2=Sasidharan |first2=Rashmi |last3=Voesenek |first3=Laurentius A. C. J. |title=The role of ethylene in metabolic acclimations to low oxygen |journal=New Phytologist |date=January 2021 |volume=229 |issue=1 |pages=64–70 |doi=10.1111/nph.16378}}</ref><ref>{{cite journal |last1=Liu |first1=Zeguang |last2=Hartman |first2=Sjon |last3=van Veen |first3=Hans |last4=Zhang |first4=Hongtao |last5=Leeggangers |first5=Hendrika A C F |last6=Martopawiro |first6=Shanice |last7=Bosman |first7=Femke |last8=de Deugd |first8=Florian |last9=Su |first9=Peng |last10=Hummel |first10=Maureen |last11=Rankenberg |first11=Tom |last12=Hassall |first12=Kirsty L |last13=Bailey-Serres |first13=Julia |last14=Theodoulou |first14=Frederica L |last15=Voesenek |first15=Laurentius A C J |last16=Sasidharan |first16=Rashmi |title=Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration |journal=Plant Physiology |date=30 May 2022 |pages=kiac245 |doi=10.1093/plphys/kiac245}}</ref> energy and sugar status<ref>{{cite journal |last1=Cho |first1=Hsing‐Yi |last2=Loreti |first2=Elena |last3=Shih |first3=Ming‐Che |last4=Perata |first4=Pierdomenico |title=Energy and sugar signaling during hypoxia |journal=New Phytologist |date=January 2021 |volume=229 |issue=1 |pages=57–63 |doi=10.1111/nph.16326}}</ref><ref>{{cite journal |last1=Schmidt |first1=Romy R. |last2=Fulda |first2=Martin |last3=Paul |first3=Melanie V. |last4=Anders |first4=Max |last5=Plum |first5=Frederic |last6=Weits |first6=Daniel A. |last7=Kosmacz |first7=Monika |last8=Larson |first8=Tony R. |last9=Graham |first9=Ian A. |last10=Beemster |first10=Gerrit T. S. |last11=Licausi |first11=Francesco |last12=Geigenberger |first12=Peter |last13=Schippers |first13=Jos H. |last14=van Dongen |first14=Joost T. |title=Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis |journal=Proceedings of the National Academy of Sciences |date=18 December 2018 |volume=115 |issue=51 |pages=E12101–E12110 |doi=10.1073/pnas.1809429115}}</ref> to acclimate to waterlogging-induced oxygen deprivation.


In [[irrigation|irrigated]] agricultural land, waterlogging is often accompanied by [[soil salinity]] as waterlogged soils prevent [[soil salinity control|leaching]] of the [[Sodium chloride|salt]]s imported by the irrigation water.
In [[irrigation|irrigated]] agricultural land, waterlogging is often accompanied by [[soil salinity]] as waterlogged soils prevent [[soil salinity control|leaching]] of the [[Sodium chloride|salt]]s imported by the irrigation water.

Revision as of 09:04, 1 June 2022

Crop yield (Y) and depth of water table (X in dm). At shallow depth the yield reduces.
Antique Dutch windmills used to pump water into the embanked river to prevent waterlogging of the lowlands (polders) behind them.

Waterlogging water is the saturation of soil with water.[1] Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of mesophytes suffer, and the subsurface reducing atmosphere leads to such processes as denitrification, methanogenesis, and the reduction of iron and manganese oxides.[2]

All plants, including crops require air (specifically, oxygen) to respire, produce energy and keep their cells alive. In agriculture, waterlogging of the soil typically blocks air from getting in to the roots.[3] With the exception of rice (Oryza sativa),[4][5] most crops like maize and potato,[6][7][8] are therefore highly intolerant to waterlogging. Plant cells use a variety of signals such the oxygen concentration,[9] plant hormones like ethylene,[10][11] energy and sugar status[12][13] to acclimate to waterlogging-induced oxygen deprivation.

In irrigated agricultural land, waterlogging is often accompanied by soil salinity as waterlogged soils prevent leaching of the salts imported by the irrigation water.

From a gardening point of view, waterlogging is the process whereby the soil hardens to the point where neither air nor water can soak through.

See also

References

  1. ^ "waterlog - definition of waterlog in English | Oxford Dictionaries". Oxford Dictionaries | English. Retrieved 2017-03-10.
  2. ^ Hillel, Daniel (2004). Introduction to Environmental Soil Physics. United States of America: Elsevier Academic Press. pp. 441. ISBN 0-12-348655-6.
  3. ^ Sasidharan, Rashmi; Hartman, Sjon; Liu, Zeguang; Martopawiro, Shanice; Sajeev, Nikita; van Veen, Hans; Yeung, Elaine; Voesenek, Laurentius A. C. J. (February 2018). "Signal Dynamics and Interactions during Flooding Stress". Plant Physiology. 176 (2): 1106–1117. doi:10.1104/pp.17.01232.
  4. ^ Hattori, Yoko; Nagai, Keisuke; Furukawa, Shizuka; Song, Xian-Jun; Kawano, Ritsuko; Sakakibara, Hitoshi; Wu, Jianzhong; Matsumoto, Takashi; Yoshimura, Atsushi; Kitano, Hidemi; Matsuoka, Makoto; Mori, Hitoshi; Ashikari, Motoyuki (August 2009). "The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water". Nature. 460 (7258): 1026–1030. doi:10.1038/nature08258.
  5. ^ Xu, Kenong; Xu, Xia; Fukao, Takeshi; Canlas, Patrick; Maghirang-Rodriguez, Reycel; Heuer, Sigrid; Ismail, Abdelbagi M.; Bailey-Serres, Julia; Ronald, Pamela C.; Mackill, David J. (August 2006). "Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice". Nature. 442 (7103): 705–708. doi:10.1038/nature04920.
  6. ^ Sanclemente, Maria-Angelica; Ma, Fangfang; Liu, Peng; Della Porta, Adriana; Singh, Jugpreet; Wu, Shan; Colquhoun, Thomas; Johnson, Timothy; Guan, Jiahn-Chou; Koch, Karen E (15 March 2021). "Sugar modulation of anaerobic-response networks in maize root tips". Plant Physiology. 185 (2): 295–317. doi:10.1093/plphys/kiaa029.
  7. ^ Hartman, Sjon (15 March 2021). "Averting a sweet demise: sugars change the transcriptional hypoxia response in maize roots". Plant Physiology. 185 (2): 280–281. doi:10.1093/plphys/kiaa053.
  8. ^ Hartman, Sjon; van Dongen, Nienke; Renneberg, Dominique M.H.J.; Welschen-Evertman, Rob A.M.; Kociemba, Johanna; Sasidharan, Rashmi; Voesenek, Laurentius A.C.J. (13 August 2020). "Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species". Plants. 9 (8): 1022. doi:10.3390/plants9081022.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Gibbs, Daniel J.; Lee, Seung Cho; Md Isa, Nurulhikma; Gramuglia, Silvia; Fukao, Takeshi; Bassel, George W.; Correia, Cristina Sousa; Corbineau, Françoise; Theodoulou, Frederica L.; Bailey-Serres, Julia; Holdsworth, Michael J. (November 2011). "Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants". Nature. 479 (7373): 415–418. doi:10.1038/nature10534.
  10. ^ Hartman, Sjon; Sasidharan, Rashmi; Voesenek, Laurentius A. C. J. (January 2021). "The role of ethylene in metabolic acclimations to low oxygen". New Phytologist. 229 (1): 64–70. doi:10.1111/nph.16378.
  11. ^ Liu, Zeguang; Hartman, Sjon; van Veen, Hans; Zhang, Hongtao; Leeggangers, Hendrika A C F; Martopawiro, Shanice; Bosman, Femke; de Deugd, Florian; Su, Peng; Hummel, Maureen; Rankenberg, Tom; Hassall, Kirsty L; Bailey-Serres, Julia; Theodoulou, Frederica L; Voesenek, Laurentius A C J; Sasidharan, Rashmi (30 May 2022). "Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration". Plant Physiology: kiac245. doi:10.1093/plphys/kiac245.
  12. ^ Cho, Hsing‐Yi; Loreti, Elena; Shih, Ming‐Che; Perata, Pierdomenico (January 2021). "Energy and sugar signaling during hypoxia". New Phytologist. 229 (1): 57–63. doi:10.1111/nph.16326.
  13. ^ Schmidt, Romy R.; Fulda, Martin; Paul, Melanie V.; Anders, Max; Plum, Frederic; Weits, Daniel A.; Kosmacz, Monika; Larson, Tony R.; Graham, Ian A.; Beemster, Gerrit T. S.; Licausi, Francesco; Geigenberger, Peter; Schippers, Jos H.; van Dongen, Joost T. (18 December 2018). "Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis". Proceedings of the National Academy of Sciences. 115 (51): E12101–E12110. doi:10.1073/pnas.1809429115.

External links