Jump to content

Burkholderia cenocepacia: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
Seabuntin (talk | contribs)
rewrote the lead section and included hyperlinks
Line 8: Line 8:
}}
}}


'''''Burkholderia cenocepacia''''' is a species of Gram-negative bacteria that is common in the environment, can form a [[biofilm]] with itself,<ref name="Csavas1">{{cite journal |title=Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from ''Burkholderia cenocepacia'' |author1=Magdolna Csavas |author2=Lenka Malinovska |author3=Florent Perret |author4=Milan Gyurko |author5=Zita Tunde Illyes |author6=Michaela Wimmerova |author7=Aniko Borbas |date=14 November 2016 |journal=Carbohydrate Research |publisher=Elsevier |volume=437 |pages=1–8 |doi=10.1016/j.carres.2016.11.008 |quote=''Burkholderia cenocepacia'' is a Gram-negative bacterium with the ability to form a biofilm |pmid=27871013|hdl=2437/239138 |hdl-access=free }}</ref> is resistant to many [[antibiotics]]<ref name="Alshraiedeh">{{cite journal |title=Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma |author1=Nida H. Alshraiedeh |author2=Sarah Higginbotham |author3=Padrig B. Flynn |author4=Mahmoud Y. Alkawareek |author5=Michael M. Tunney |author6=Sean P. Gorman |author7=William G. Graham |author8=Brendan F. Gilmore |date=22 April 2016 |journal=International Journal of Antimicrobial Agents |volume=47 |issue=6 |pages=446–450 |doi=10.1016/j.ijantimicag.2016.03.004 |pmid=27179816 |quote=''B. cenocepacia'' can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance}}</ref> and may cause disease in plants, such as in onions<ref>{{Cite journal |last=da Silva |first=Pedro Henrique Rodrigues |last2=de Assunção |first2=Emanuel Feitosa |last3=da Silva Velez |first3=Leandro |last4=dos Santos |first4=Lucas Nascimento |last5=de Souza |first5=Elineide Barbosa |last6=da Gama |first6=Marco Aurélio Siqueira |date=2021-08-05 |title=Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578472/ |journal=Brazilian Journal of Microbiology |volume=52 |issue=4 |pages=1665–1675 |doi=10.1007/s42770-021-00564-6 |issn=1517-8382 |pmc=8578472 |pmid=34351603}}</ref><ref>{{Cite journal |last=Jacobs |first=Janette L. |last2=Fasi |first2=Anthony C. |last3=Ramette |first3=Alban |last4=Smith |first4=James J. |last5=Hammerschmidt |first5=Raymond |last6=Sundin |first6=George W. |date=May 2008 |title=Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil |url=https://pubmed.ncbi.nlm.nih.gov/18344334/ |journal=Applied and Environmental Microbiology |volume=74 |issue=10 |pages=3121–3129 |doi=10.1128/AEM.01941-07 |issn=1098-5336 |pmc=2394932 |pmid=18344334}}</ref> and bananas.<ref>{{Cite journal |last=Lee |first=Yung-An |last2=Chan |first2=Chih-Wen |date=February 2007 |title=Molecular Typing and Presence of Genetic Markers Among Strains of Banana Finger-Tip Rot Pathogen, Burkholderia cenocepacia, in Taiwan |url=https://pubmed.ncbi.nlm.nih.gov/18944375/ |journal=Phytopathology |volume=97 |issue=2 |pages=195–201 |doi=10.1094/PHYTO-97-2-0195 |issn=0031-949X |pmid=18944375}}</ref>
'''''Burkholderia cenocepacia''''' is a Gram-negative, rod-shaped bacterium that is commonly found in soil and water environments<ref>{{Cite journal |last=O’Grady |first=Eoin P. |last2=Sokol |first2=Pamela A. |date=2011-12-09 |title=Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417382/ |journal=Frontiers in Cellular and Infection Microbiology |volume=1 |pages=15 |doi=10.3389/fcimb.2011.00015 |issn=2235-2988 |pmc=3417382 |pmid=22919581}}</ref> and may also be associated with plants and animals, particularly as a human pathogen. It is one of over 20 species in the [[Burkholderia cepacia complex|''Burkholderia cepacia'' complex]] (Bcc) and is notable due to its virulence factors and inherent antibiotic resistance that render it a prominent opportunistic pathogen responsible for life-threatening, [[Hospital-acquired infection|nosocomial]] infections in immunocompromised patients, such as those with cystic fibrosis or chronic granulomatous disease<ref>{{Cite journal |last=Lauman |first=Philip |last2=Dennis |first2=Jonathan J. |date=2021-07 |title=Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex |url=https://www.mdpi.com/1999-4915/13/7/1331 |journal=Viruses |language=en |volume=13 |issue=7 |pages=1331 |doi=10.3390/v13071331 |issn=1999-4915}}</ref>. ''Burkholderia cenocepacia'' may also cause disease in plants, such as in onions<ref>{{Cite journal |last=da Silva |first=Pedro Henrique Rodrigues |last2=de Assunção |first2=Emanuel Feitosa |last3=da Silva Velez |first3=Leandro |last4=dos Santos |first4=Lucas Nascimento |last5=de Souza |first5=Elineide Barbosa |last6=da Gama |first6=Marco Aurélio Siqueira |date=2021-08-05 |title=Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578472/ |journal=Brazilian Journal of Microbiology |volume=52 |issue=4 |pages=1665–1675 |doi=10.1007/s42770-021-00564-6 |issn=1517-8382 |pmc=8578472 |pmid=34351603}}</ref><ref>{{Cite journal |last=Jacobs |first=Janette L. |last2=Fasi |first2=Anthony C. |last3=Ramette |first3=Alban |last4=Smith |first4=James J. |last5=Hammerschmidt |first5=Raymond |last6=Sundin |first6=George W. |date=May 2008 |title=Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil |url=https://pubmed.ncbi.nlm.nih.gov/18344334/ |journal=Applied and Environmental Microbiology |volume=74 |issue=10 |pages=3121–3129 |doi=10.1128/AEM.01941-07 |issn=1098-5336 |pmc=2394932 |pmid=18344334}}</ref> and bananas.<ref>{{Cite journal |last=Lee |first=Yung-An |last2=Chan |first2=Chih-Wen |date=February 2007 |title=Molecular Typing and Presence of Genetic Markers Among Strains of Banana Finger-Tip Rot Pathogen, Burkholderia cenocepacia, in Taiwan |url=https://pubmed.ncbi.nlm.nih.gov/18944375/ |journal=Phytopathology |volume=97 |issue=2 |pages=195–201 |doi=10.1094/PHYTO-97-2-0195 |issn=0031-949X |pmid=18944375}}</ref>


==Pathogenicity==
==Pathogenicity==
Line 20: Line 20:


==Microbiology==
==Microbiology==
In addition, the strong environmental protection response of ''B. cenocepacia'' is attributed to the biofilm formed by groups of the organism.<ref name="Alshraiedeh" /> This biofilm contains [[exopolysaccharides]] (abbreviated EPS) that strengthen the bacterium's resistance to antibiotics. It is made up of a highly branched polysaccharide unit with one [[glucose]], one [[glucuronic acid]], one [[mannose]], one [[rhamnose]], and three galactose molecules. This species in the Bcc has also created another polysaccharide with one 3-deoxy-d-''manno''-2-octulosonic acid and three galactose molecules.<ref>{{Cite journal|last1=Chiarini|first1=Luigi|last2=Cescutti|first2=Paola|last3=Drigo|first3=Laura|last4=Impallomeni|first4=Giuseppe|last5=Herasimenka|first5=Yury|last6=Bevivino|first6=Annamaria|last7=Dalmastri|first7=Claudia|last8=Tabacchioni|first8=Silvia|last9=Manno|first9=Graziana|last10=Zanetti|first10=Flavio|last11=Rizzo|first11=Roberto|date=2004-08-01|title=Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB|journal=Journal of Cystic Fibrosis|volume=3|issue=3|pages=165–172|doi=10.1016/j.jcf.2004.04.004|pmid=15463903|issn=1569-1993|doi-access=free}}</ref> The biofilm exopolysaccharides acted as a barrier to [[neutrophils]] from human immune resistance systems, undermining the neutrophil defense action by inhibiting [[chemotaxis]] and reducing the production of [[reactive oxygen species]].<ref name="Bylund">{{cite journal |url=http://www.jbc.org/content/281/5/2526.full.pdf |title=Exopolysaccharides from Burkholderia cenocepacia Inhibit Neutrophil Chemotaxis and Scavenge Reactive Oxygen Species |author1=Johann Bylund |author2=Lee-Anna Burgess |author3=Paola Cescutti |author4=Robert K. Ernst |author5=David P. Speert |date=29 November 2005 |journal=The Journal of Biological Chemistry |volume=281 |issue=5 |pages=2526–2532 |doi=10.1074/jbc.M510692200 |pmid=16316987 |accessdate=6 January 2017 |quote=We showed that EPS from a clinical ''B. cenocepacia'' isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses|doi-access=free }}</ref>
In addition, the strong environmental protection response of ''B. cenocepacia'' is attributed to the biofilm formed by groups of the organism.<ref name="Alshraiedeh">{{cite journal |author1=Nida H. Alshraiedeh |author2=Sarah Higginbotham |author3=Padrig B. Flynn |author4=Mahmoud Y. Alkawareek |author5=Michael M. Tunney |author6=Sean P. Gorman |author7=William G. Graham |author8=Brendan F. Gilmore |date=22 April 2016 |title=Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma |journal=International Journal of Antimicrobial Agents |volume=47 |issue=6 |pages=446–450 |doi=10.1016/j.ijantimicag.2016.03.004 |pmid=27179816 |quote=''B. cenocepacia'' can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance}}</ref> This biofilm contains [[exopolysaccharides]] (abbreviated EPS) that strengthen the bacterium's resistance to antibiotics. It is made up of a highly branched polysaccharide unit with one [[glucose]], one [[glucuronic acid]], one [[mannose]], one [[rhamnose]], and three galactose molecules. This species in the Bcc has also created another polysaccharide with one 3-deoxy-d-''manno''-2-octulosonic acid and three galactose molecules.<ref>{{Cite journal|last1=Chiarini|first1=Luigi|last2=Cescutti|first2=Paola|last3=Drigo|first3=Laura|last4=Impallomeni|first4=Giuseppe|last5=Herasimenka|first5=Yury|last6=Bevivino|first6=Annamaria|last7=Dalmastri|first7=Claudia|last8=Tabacchioni|first8=Silvia|last9=Manno|first9=Graziana|last10=Zanetti|first10=Flavio|last11=Rizzo|first11=Roberto|date=2004-08-01|title=Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB|journal=Journal of Cystic Fibrosis|volume=3|issue=3|pages=165–172|doi=10.1016/j.jcf.2004.04.004|pmid=15463903|issn=1569-1993|doi-access=free}}</ref> The biofilm exopolysaccharides acted as a barrier to [[neutrophils]] from human immune resistance systems, undermining the neutrophil defense action by inhibiting [[chemotaxis]] and reducing the production of [[reactive oxygen species]].<ref name="Bylund">{{cite journal |url=http://www.jbc.org/content/281/5/2526.full.pdf |title=Exopolysaccharides from Burkholderia cenocepacia Inhibit Neutrophil Chemotaxis and Scavenge Reactive Oxygen Species |author1=Johann Bylund |author2=Lee-Anna Burgess |author3=Paola Cescutti |author4=Robert K. Ernst |author5=David P. Speert |date=29 November 2005 |journal=The Journal of Biological Chemistry |volume=281 |issue=5 |pages=2526–2532 |doi=10.1074/jbc.M510692200 |pmid=16316987 |accessdate=6 January 2017 |quote=We showed that EPS from a clinical ''B. cenocepacia'' isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses|doi-access=free }}</ref>


==References==
==References==

Revision as of 01:22, 5 October 2022

Burkholderia cenocepacia
Electron micrograph of Burkholderia cepacia
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Species:
B. cenocepacia
Binomial name
Burkholderia cenocepacia
Vandamme et al. 2003

Burkholderia cenocepacia is a Gram-negative, rod-shaped bacterium that is commonly found in soil and water environments[1] and may also be associated with plants and animals, particularly as a human pathogen. It is one of over 20 species in the Burkholderia cepacia complex (Bcc) and is notable due to its virulence factors and inherent antibiotic resistance that render it a prominent opportunistic pathogen responsible for life-threatening, nosocomial infections in immunocompromised patients, such as those with cystic fibrosis or chronic granulomatous disease[2]. Burkholderia cenocepacia may also cause disease in plants, such as in onions[3][4] and bananas.[5]

Pathogenicity

Burkholderia cenocepacia is an opportunistic pathogen that commonly infects immunocompromised patients, especially those with cystic fibrosis, and is often lethal.[6] In cystic fibrosis, it can cause "cepacia syndrome" which is characterized by a rapidly progressive fever, uncontrolled bronchopneumonia, weight loss, and in some cases, death. A review of B. cenocepacia in respiratory infections of cystic fibrosis patients stated that "one of the most threatening pathogens in [cystic fibrosis] is Burkholderia cenocepacia, a member of a bacterial group collectively referred to as the Burkholderia cepacia complex (Bcc)".[7] Twenty-four small RNAs were identified using RNA-binding properties of the Hfq protein during the exponential growth phases.[8] sRNAs identified in Burkholderia cenocepacia KC-0 were upregulated under iron depletion and oxidative stress.[9] In Seattle, a team led by microbiologist Joseph Mougous at the University of Washington had discovered a strange enzyme (a toxin called DddA) made by the bacterium Burkholderia cenocepacia — and when it encountered the DNA base C, it converted it to a U. Because U, which is not commonly found in DNA, behaves like a T, the enzymes that replicate the cell’s DNA copy it as a T, effectively converting a C in the genome sequence to a T. This has reportedly been used for the first gene-editing of mitochondria – for which a team at the Broad Institute developed a new kind of CRISPR-free base editor, called DdCBE, using the toxin.[10][11][12][13]

See also: Burkholderia thailandensis sRNA

Taxonomy

Originally defined as B. cepacia, the group has now been split into nine species,[14] and B. cenocepacia is one of the most intensively-studied.[15]

Microbiology

In addition, the strong environmental protection response of B. cenocepacia is attributed to the biofilm formed by groups of the organism.[16] This biofilm contains exopolysaccharides (abbreviated EPS) that strengthen the bacterium's resistance to antibiotics. It is made up of a highly branched polysaccharide unit with one glucose, one glucuronic acid, one mannose, one rhamnose, and three galactose molecules. This species in the Bcc has also created another polysaccharide with one 3-deoxy-d-manno-2-octulosonic acid and three galactose molecules.[17] The biofilm exopolysaccharides acted as a barrier to neutrophils from human immune resistance systems, undermining the neutrophil defense action by inhibiting chemotaxis and reducing the production of reactive oxygen species.[18]

References

  1. ^ O’Grady, Eoin P.; Sokol, Pamela A. (2011-12-09). "Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment". Frontiers in Cellular and Infection Microbiology. 1: 15. doi:10.3389/fcimb.2011.00015. ISSN 2235-2988. PMC 3417382. PMID 22919581.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ Lauman, Philip; Dennis, Jonathan J. (2021-07). "Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex". Viruses. 13 (7): 1331. doi:10.3390/v13071331. ISSN 1999-4915. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  3. ^ da Silva, Pedro Henrique Rodrigues; de Assunção, Emanuel Feitosa; da Silva Velez, Leandro; dos Santos, Lucas Nascimento; de Souza, Elineide Barbosa; da Gama, Marco Aurélio Siqueira (2021-08-05). "Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot". Brazilian Journal of Microbiology. 52 (4): 1665–1675. doi:10.1007/s42770-021-00564-6. ISSN 1517-8382. PMC 8578472. PMID 34351603.
  4. ^ Jacobs, Janette L.; Fasi, Anthony C.; Ramette, Alban; Smith, James J.; Hammerschmidt, Raymond; Sundin, George W. (May 2008). "Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil". Applied and Environmental Microbiology. 74 (10): 3121–3129. doi:10.1128/AEM.01941-07. ISSN 1098-5336. PMC 2394932. PMID 18344334.
  5. ^ Lee, Yung-An; Chan, Chih-Wen (February 2007). "Molecular Typing and Presence of Genetic Markers Among Strains of Banana Finger-Tip Rot Pathogen, Burkholderia cenocepacia, in Taiwan". Phytopathology. 97 (2): 195–201. doi:10.1094/PHYTO-97-2-0195. ISSN 0031-949X. PMID 18944375.
  6. ^ Magdolna Csavas; Lenka Malinovska; Florent Perret; Milan Gyurko; Zita Tunde Illyes; Michaela Wimmerova; Aniko Borbas (14 November 2016). "Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from Burkholderia cenocepacia". Carbohydrate Research. 437. Elsevier: 1–8. doi:10.1016/j.carres.2016.11.008. hdl:2437/239138. PMID 27871013. It is recognized as an opportunistic human pathogen causing lung infections in immunocompromised individuals, especially in cystic fibrosis patients, with significant mortality and morbidity
  7. ^ P. Drevinkek; E. Mahenthiralingam (2010). "Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence". Clinical Microbiology and Infection. 16 (7): 821–830. doi:10.1111/j.1469-0691.2010.03237.x. PMID 20880411. Retrieved 6 January 2017.
  8. ^ Ramos, Christian G.; Grilo, André M.; da Costa, Paulo J. P.; Leitão, Jorge H. (February 2013). "Experimental identification of small non-coding regulatory RNAs in the opportunistic human pathogen Burkholderia cenocepacia J2315". Genomics. 101 (2): 139–148. doi:10.1016/j.ygeno.2012.10.006. ISSN 1089-8646. PMID 23142676.
  9. ^ Ghosh, Suparna; Dureja, Chetna; Khatri, Indu; Subramanian, Srikrishna; Raychaudhuri, Saumya; Ghosh, Sagarmoy (2017-11-03). "Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions". Microbiology. 163 (12): 1924–1936. doi:10.1099/mic.0.000566. ISSN 1465-2080. PMID 29099689.
  10. ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Retrieved 12 July 2020.
  11. ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode:2020Natur.583..631M. doi:10.1038/s41586-020-2477-4. ISSN 1476-4687. PMC 7381381. PMID 32641830.
  12. ^ Mike McRae: For The First Time, Scientists Find a Way to Make Targeted Edits to Mitochondrial DNA, on: sciencealert, July 10, 2020
  13. ^ Beverly Y. Mok, M. H. de Moraes, J. Zeng, et al.: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing, in: Nature (2020). July 8, 2020. doi:10.1038/s41586-020-2477-4
  14. ^ Lipuma J (2005). "Update on the Burkholderia cepacia complex". Curr Opin Pulm Med. 11 (6): 528–33. doi:10.1097/01.mcp.0000181475.85187.ed. PMID 16217180. S2CID 19117513.
  15. ^ Mahenthiralingam E, Vandamme P (2005). "Taxonomy and pathogenesis of the Burkholderia cepacia complex". Chron Respir Dis. 2 (4): 209–17. doi:10.1191/1479972305cd053ra. PMID 16541604. S2CID 38730479.
  16. ^ Nida H. Alshraiedeh; Sarah Higginbotham; Padrig B. Flynn; Mahmoud Y. Alkawareek; Michael M. Tunney; Sean P. Gorman; William G. Graham; Brendan F. Gilmore (22 April 2016). "Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma". International Journal of Antimicrobial Agents. 47 (6): 446–450. doi:10.1016/j.ijantimicag.2016.03.004. PMID 27179816. B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance
  17. ^ Chiarini, Luigi; Cescutti, Paola; Drigo, Laura; Impallomeni, Giuseppe; Herasimenka, Yury; Bevivino, Annamaria; Dalmastri, Claudia; Tabacchioni, Silvia; Manno, Graziana; Zanetti, Flavio; Rizzo, Roberto (2004-08-01). "Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB". Journal of Cystic Fibrosis. 3 (3): 165–172. doi:10.1016/j.jcf.2004.04.004. ISSN 1569-1993. PMID 15463903.
  18. ^ Johann Bylund; Lee-Anna Burgess; Paola Cescutti; Robert K. Ernst; David P. Speert (29 November 2005). "Exopolysaccharides from Burkholderia cenocepacia Inhibit Neutrophil Chemotaxis and Scavenge Reactive Oxygen Species" (PDF). The Journal of Biological Chemistry. 281 (5): 2526–2532. doi:10.1074/jbc.M510692200. PMID 16316987. Retrieved 6 January 2017. We showed that EPS from a clinical B. cenocepacia isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses