Jump to content

Bismuthinidene: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: title. Add: s2cid, year, pmid, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Graeme Bartlett | #UCB_toolbar
Tpioch (talk | contribs)
Overhauled the properties section, placing it earlier and providing details for a representative example. Added a hetero-Diels-Alder mechanism figure and edited the other sections with additional details and citations.
Line 1: Line 1:
[[File:Bismuthinidene General Structure.png|thumb|General structure of a bismuthinidene.]]{{Short description|Chemical compounds of bismuth}}
[[File:Bismuthinidene General Structure.png|thumb|General structure of a bismuthinidene.]]{{Short description|Chemical compounds of bismuth}}
'''Bismuthinidenes''' are a class of [[Organobismuth chemistry|organobismuth]] compounds, analogous to [[Nitrene|nitrenes]]. These compounds have the general form R-Bi, with two lone pairs of electrons on the central [[bismuth]](I) atom.<ref name=":8">{{Cite journal |last1=Mukhopadhyay |first1=Deb Pratim |last2=Schleier |first2=Domenik |last3=Wirsing |first3=Sara |last4=Ramler |first4=Jacqueline |last5=Kaiser |first5=Dustin |last6=Reusch |first6=Engelbert |last7=Hemberger |first7=Patrick |last8=Preitschopf |first8=Tobias |last9=Krummenacher |first9=Ivo |last10=Engels |first10=Bernd |last11=Fischer |first11=Ingo |last12=Lichtenberg |first12=Crispin |date=2020-07-29 |title=Methylbismuth: an organometallic bismuthinidene biradical |journal=Chemical Science |language=en |volume=11 |issue=29 |pages=7562–7568 |doi=10.1039/D0SC02410D |issn=2041-6539 |pmc=7450715 |pmid=32874526}}</ref> Due to the unusually low valency and [[oxidation state]] of +1, most bismuthinidenes are reactive and unstable,<ref name=":0">{{Cite journal |last1=Wang |first1=Guocang |last2=Freeman |first2=Lucas A. |last3=Dickie |first3=Diane A. |last4=Mokrai |first4=Réka |last5=Benkő |first5=Zoltán |last6=Gilliard |first6=Robert J. |date=2019-03-21 |title=Isolation of Cyclic(Alkyl)(Amino) Carbene–Bismuthinidene Mediated by a Beryllium(0) Complex |journal=Chemistry – A European Journal |language=en |volume=25 |issue=17 |pages=4335–4339 |doi=10.1002/chem.201900458 |issn=0947-6539 |pmc=6593863 |pmid=30706565}}</ref> though in recent decades, both [[Transition metal|transition metals]] and polydentate chelating [[Lewis acids and bases|Lewis base]] [[Ligand|ligands]] have been employed to stabilize the low-valent bismuth(I) center through [[Steric effects|steric protection]] and [[Metal–ligand multiple bond|π donation]] either in solution or in crystal structures.<ref name=":8" /><ref name=":2">{{Cite journal |last1=Šimon |first1=Petr |last2=de Proft |first2=Frank |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Dostál |first5=Libor |date=2010-07-02 |title=Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201002209 |journal=Angewandte Chemie International Edition |language=en |volume=49 |issue=32 |pages=5468–5471 |doi=10.1002/anie.201002209 |pmid=20602393}}</ref><ref name=":16">{{Cite journal |last=Dostál |first=Libor |date=2017-12-15 |title=Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds |url=https://www.sciencedirect.com/science/article/pii/S0010854517304307 |journal=Coordination Chemistry Reviews |language=en |volume=353 |pages=142–158 |doi=10.1016/j.ccr.2017.10.009 |issn=0010-8545}}</ref> In the ground state, Lewis base-stabilized bismuthinidenes adopt a [[Singlet state|singlet]] ground state with an inert [[lone pair]] of electrons in the 6s [[Atomic orbital|orbital]].<ref name=":8" /> A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.<ref name=":2" />
'''Bismuthinidenes''' are a class of [[Organobismuth chemistry|organobismuth]] compounds, analogous to [[Carbene|carbenes]]. These compounds have the general form R-Bi, with two [[Lone pair|lone pairs]] of electrons on the central [[bismuth]](I) atom.<ref name=":8">{{Cite journal |last1=Mukhopadhyay |first1=Deb Pratim |last2=Schleier |first2=Domenik |last3=Wirsing |first3=Sara |last4=Ramler |first4=Jacqueline |last5=Kaiser |first5=Dustin |last6=Reusch |first6=Engelbert |last7=Hemberger |first7=Patrick |last8=Preitschopf |first8=Tobias |last9=Krummenacher |first9=Ivo |last10=Engels |first10=Bernd |last11=Fischer |first11=Ingo |last12=Lichtenberg |first12=Crispin |date=2020-07-29 |title=Methylbismuth: an organometallic bismuthinidene biradical |journal=Chemical Science |language=en |volume=11 |issue=29 |pages=7562–7568 |doi=10.1039/D0SC02410D |issn=2041-6539 |pmc=7450715 |pmid=32874526}}</ref> Due to the unusually low valency and [[oxidation state]] of +1, most bismuthinidenes are reactive and unstable,<ref name=":0">{{Cite journal |last1=Wang |first1=Guocang |last2=Freeman |first2=Lucas A. |last3=Dickie |first3=Diane A. |last4=Mokrai |first4=Réka |last5=Benkő |first5=Zoltán |last6=Gilliard |first6=Robert J. |date=2019-03-21 |title=Isolation of Cyclic(Alkyl)(Amino) Carbene–Bismuthinidene Mediated by a Beryllium(0) Complex |journal=Chemistry – A European Journal |language=en |volume=25 |issue=17 |pages=4335–4339 |doi=10.1002/chem.201900458 |issn=0947-6539 |pmc=6593863 |pmid=30706565}}</ref> though in recent decades, both [[Transition metal|transition metals]] and polydentate chelating [[Lewis acids and bases|Lewis base]] [[Ligand|ligands]] have been employed to stabilize the low-valent bismuth(I) center through [[Steric effects|steric protection]] and [[Metal–ligand multiple bond|π donation]] either in solution or in crystal structures.<ref name=":8" /><ref name=":2">{{Cite journal |last1=Šimon |first1=Petr |last2=de Proft |first2=Frank |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Dostál |first5=Libor |date=2010-07-02 |title=Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201002209 |journal=Angewandte Chemie International Edition |language=en |volume=49 |issue=32 |pages=5468–5471 |doi=10.1002/anie.201002209 |pmid=20602393}}</ref><ref name=":16">{{Cite journal |last=Dostál |first=Libor |date=2017-12-15 |title=Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds |url=https://www.sciencedirect.com/science/article/pii/S0010854517304307 |journal=Coordination Chemistry Reviews |language=en |volume=353 |pages=142–158 |doi=10.1016/j.ccr.2017.10.009 |issn=0010-8545}}</ref> Lewis base-stabilized bismuthinidenes adopt a [[Singlet state|singlet]] ground state with an inert lone pair of electrons in the 6s [[Atomic orbital|orbital]].<ref name=":8" /> A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.<ref name=":2" />


== Synthesis ==
== Synthesis ==
=== Transition metal-stabilized bismuthinidene ===
=== Transition metal-stabilized bismuthinidene ===
The earliest examples of bismuthinidene [[Coordination complex|complexes]] used transition metal chemistry to stabilize the Bi(I) center.<ref name=":9">{{Cite journal |last1=Arif |first1=Atta M. |last2=Cowley |first2=Alan H. |last3=Norman |first3=Nicholas C. |last4=Pakulski |first4=Marek |date=1985 |title=A tungsten-bismuth cluster featuring dibismuth as a four-electron donor and a bridging bismuthinidene |url=https://pubs.acs.org/doi/abs/10.1021/ja00290a054 |journal=Journal of the American Chemical Society |language=en |volume=107 |issue=4 |pages=1062–1063 |doi=10.1021/ja00290a054 |issn=0002-7863}}</ref><ref name=":10">{{Cite journal |last1=Arif |first1=A. M. |last2=Cowley |first2=A. H. |last3=Norman |first3=N. C. |last4=Pakulski |first4=M. |date=1986 |title=Reactivity of bulky alkyldichlorostibines and alkyldichlorobismuthines toward [W(CO)5]2-: synthesis of compounds containing stibinidene, bismuthinidene, and dibismuth ligands |url=https://pubs.acs.org/doi/abs/10.1021/ic00247a012 |journal=Inorganic Chemistry |language=en |volume=25 |issue=27 |pages=4836–4840 |doi=10.1021/ic00247a012 |issn=0020-1669}}</ref><ref>{{Cite journal |last1=Davies |first1=Simon J. |last2=Compton |first2=Neville A. |last3=Huttner |first3=Gottfried |last4=Zsolnai |first4=Laszlo |last5=Garner |first5=Stephanie E. |date=1991 |title=Synthesis and Reactivity of "Bismuthinidene" Compounds and the Formation of Bi 1 Chelate Complexes |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19911241214 |journal=Chemische Berichte |language=en |volume=124 |issue=12 |pages=2731–2738 |doi=10.1002/cber.19911241214 |issn=0009-2940}}</ref><ref>{{Cite journal |last1=Shieh |first1=Minghuey |last2=Cherng |first2=Jiann-Jang |last3=Lai |first3=Yun-Wen |last4=Ueng |first4=Chuen-Her |last5=Peng |first5=Shie-Ming |last6=Liu |first6=Yi-Hung |date=2002-10-04 |title=Carbonylchromium Derivatives of Bismuth: New Syntheses and Relevance to CO Activation |url=http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4522::aid-chem4522>3.0.co;2-7 |journal=Chemistry - A European Journal |volume=8 |issue=19 |pages=4522–4527 |doi=10.1002/1521-3765(20021004)8:19<4522::aid-chem4522>3.0.co;2-7 |pmid=12355541 |issn=0947-6539}}</ref> These methods generally leveraged the ability of simple bismuth(I) [[Halide|halides]] or methylbismuth to ligate to [[tungsten]], [[manganese]], and [[chromium]] [[Carbon monoxide|carbonyl]] complexes. These complexes were occasionally found to [[Oligomer|oligomerize]], forming Bi-Bi single or double bonds to form bismuthane or bismuthene [[Moiety (chemistry)|moieties]].<ref name=":9" /><ref name=":10" /><ref name=":1">{{Cite journal |last1=Tokitoh |first1=Norihiro |last2=Arai |first2=Yoshimitsu |last3=Okazaki |first3=Renji |last4=Nagase |first4=Shigeru |date=1997-07-04 |title=Synthesis and Characterization of a Stable Dibismuthene: Evidence for a Bi-Bi Double Bond |url=https://www.science.org/doi/10.1126/science.277.5322.78 |journal=Science |language=en |volume=277 |issue=5322 |pages=78–80 |doi=10.1126/science.277.5322.78 |issn=0036-8075}}</ref> One of the first examples of a monomeric bismuthinidene was discovered by Balasz et al., who used R = 2-(dimethylaminomethyl)phenyl to chelate a Bi(I) center through a combination of strong C-Bi and weak N-Bi interactions.<ref name=":11" /> Although the molecule quickly formed a cyclic oligomer, upon reaction with two equivalents of tungsten pentacarbonyl, monomeric crystalline RBi[W(CO)<sub>5</sub>]<sub>2</sub> was isolated.<ref name=":11">{{Cite journal |last1=Balazs |first1=Lucia |last2=Breunig |first2=Hans J. |last3=Lork |first3=Enno |last4=Silvestru |first4=Cristian |title=Low‐Valent Organobismuth Compounds with Intramolecular Coordination: cyclo ‐R 3 Bi 3 , cyclo ‐R 4 Bi 4 , RBi[W(CO) 5 ] 2 , and R 4 Bi 2 [R = 2‐(Me 2 NCH 2 )C 6 H 4 ] |url=https://onlinelibrary.wiley.com/doi/10.1002/ejic.200390176 |journal=European Journal of Inorganic Chemistry |year=2003 |language=en |volume=2003 |issue=7 |pages=1361–1365 |doi=10.1002/ejic.200390176 |issn=1434-1948}}</ref>[[File:Synthesis of Bismuthinidene-Tungsten.png|thumb|528x528px|Synthesis of an early example of monomeric bismuthinidene.<ref name=":11" />|center]]
The earliest examples of bismuthinidene [[Coordination complex|complexes]] used transition metal chemistry to stabilize the Bi(I) center.<ref name=":9">{{Cite journal |last1=Arif |first1=Atta M. |last2=Cowley |first2=Alan H. |last3=Norman |first3=Nicholas C. |last4=Pakulski |first4=Marek |date=1985 |title=A tungsten-bismuth cluster featuring dibismuth as a four-electron donor and a bridging bismuthinidene |url=https://pubs.acs.org/doi/abs/10.1021/ja00290a054 |journal=Journal of the American Chemical Society |language=en |volume=107 |issue=4 |pages=1062–1063 |doi=10.1021/ja00290a054 |issn=0002-7863}}</ref><ref name=":10">{{Cite journal |last1=Arif |first1=A. M. |last2=Cowley |first2=A. H. |last3=Norman |first3=N. C. |last4=Pakulski |first4=M. |date=1986 |title=Reactivity of bulky alkyldichlorostibines and alkyldichlorobismuthines toward [W(CO)5]2-: synthesis of compounds containing stibinidene, bismuthinidene, and dibismuth ligands |url=https://pubs.acs.org/doi/abs/10.1021/ic00247a012 |journal=Inorganic Chemistry |language=en |volume=25 |issue=27 |pages=4836–4840 |doi=10.1021/ic00247a012 |issn=0020-1669}}</ref><ref>{{Cite journal |last1=Davies |first1=Simon J. |last2=Compton |first2=Neville A. |last3=Huttner |first3=Gottfried |last4=Zsolnai |first4=Laszlo |last5=Garner |first5=Stephanie E. |date=1991 |title=Synthesis and Reactivity of "Bismuthinidene" Compounds and the Formation of Bi 1 Chelate Complexes |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19911241214 |journal=Chemische Berichte |language=en |volume=124 |issue=12 |pages=2731–2738 |doi=10.1002/cber.19911241214 |issn=0009-2940}}</ref><ref>{{Cite journal |last1=Shieh |first1=Minghuey |last2=Cherng |first2=Jiann-Jang |last3=Lai |first3=Yun-Wen |last4=Ueng |first4=Chuen-Her |last5=Peng |first5=Shie-Ming |last6=Liu |first6=Yi-Hung |date=2002-10-04 |title=Carbonylchromium Derivatives of Bismuth: New Syntheses and Relevance to CO Activation |url=http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4522::aid-chem4522>3.0.co;2-7 |journal=Chemistry - A European Journal |volume=8 |issue=19 |pages=4522–4527 |doi=10.1002/1521-3765(20021004)8:19<4522::aid-chem4522>3.0.co;2-7 |pmid=12355541 |issn=0947-6539}}</ref> These methods generally leveraged the ability of simple bismuth(I) [[Halide|halides]] or methylbismuth to ligate to [[tungsten]], [[manganese]], and [[chromium]] [[Carbon monoxide|carbonyl]] complexes. These complexes were occasionally found to [[Oligomer|oligomerize]], forming Bi-Bi single or double bonds to form bismuthane or bismuthene [[Moiety (chemistry)|moieties]].<ref name=":9" /><ref name=":10" /><ref name=":1">{{Cite journal |last1=Tokitoh |first1=Norihiro |last2=Arai |first2=Yoshimitsu |last3=Okazaki |first3=Renji |last4=Nagase |first4=Shigeru |date=1997-07-04 |title=Synthesis and Characterization of a Stable Dibismuthene: Evidence for a Bi-Bi Double Bond |url=https://www.science.org/doi/10.1126/science.277.5322.78 |journal=Science |language=en |volume=277 |issue=5322 |pages=78–80 |doi=10.1126/science.277.5322.78 |issn=0036-8075}}</ref> One of the first examples of a monomeric bismuthinidene was discovered by Balasz et al., who used R = 2-(dimethylaminomethyl)phenyl to chelate a Bi(I) center through a combination of strong C-Bi and weak N-Bi interactions.<ref name=":11" /> Although the molecule quickly formed a cyclic oligomer, upon reaction with two equivalents of tungsten pentacarbonyl, monomeric crystalline RBi[W(CO)<sub>5</sub>]<sub>2</sub> was isolated.<ref name=":11">{{Cite journal |last1=Balazs |first1=Lucia |last2=Breunig |first2=Hans J. |last3=Lork |first3=Enno |last4=Silvestru |first4=Cristian |title=Low‐Valent Organobismuth Compounds with Intramolecular Coordination: cyclo ‐R 3 Bi 3 , cyclo ‐R 4 Bi 4 , RBi[W(CO) 5 ] 2 , and R 4 Bi 2 [R = 2‐(Me 2 NCH 2 )C 6 H 4 ] |url=https://onlinelibrary.wiley.com/doi/10.1002/ejic.200390176 |journal=European Journal of Inorganic Chemistry |year=2003 |language=en |volume=2003 |issue=7 |pages=1361–1365 |doi=10.1002/ejic.200390176 |issn=1434-1948}}</ref>[[File:Synthesis of Bismuthinidene-Tungsten.png|thumb|622x622px|Synthesis of an early example of monomeric bismuthinidene.<ref name=":11" />|center]]
=== ''N'',''C'',''N''-chelated bismuthinidene ===
=== ''N'',''C'',''N''-chelated bismuthinidene ===
Monomeric bismuthinidenes were not stabilized without the use of transition metal complexes until 2010, when Libor Dostál's research group reported the isolation of a bismuth(I) center stabilized only by the ''N'',''C'',''N''-[[Transition metal pincer complex|pincer ligand]] L = 2,6-bis[''N''-(2’,6’-dimethylphenyl)ketimino]phenyl.<ref name=":2" /> This complex was first synthesized by reacting the precursor molecule LBi<sup>III</sup>Cl<sub>2</sub> with two equivalents of the [[reducing agent]] K[B(''i''Bu)<sub>3</sub>H] to yield isolable crystals of stable [C<sub>6</sub>H<sub>3</sub>-2,6-(C(Me)=N-2′,6′-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]Bi.<ref name=":2" /> A slightly simpler ''N'',''C'',''N''-chelating ligand was soon used to create the bismuthinidene [C<sub>6</sub>H<sub>3</sub>-2,6-(CH=N''t''Bu)<sub>2</sub>],<ref name=":7" /><ref name=":12" /> which became widely used in later bismuthinidene studies and is occasionally referred to as "Dostál's bismuthinidene".<ref name=":14">{{Cite journal |last1=Pang |first1=Yue |last2=Leutzsch |first2=Markus |last3=Nöthling |first3=Nils |last4=Cornella |first4=Josep |date=2020-11-18 |title=Catalytic Activation of N 2 O at a Low-Valent Bismuth Redox Platform |journal=Journal of the American Chemical Society |language=en |volume=142 |issue=46 |pages=19473–19479 |doi=10.1021/jacs.0c10092 |issn=0002-7863 |pmc=7677929 |pmid=33146996}}</ref><ref name=":13">{{Cite journal |last1=Pang |first1=Yue |last2=Leutzsch |first2=Markus |last3=Nöthling |first3=Nils |last4=Katzenburg |first4=Felix |last5=Cornella |first5=Josep |date=2021-08-18 |title=Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers |journal=Journal of the American Chemical Society |language=en |volume=143 |issue=32 |pages=12487–12493 |doi=10.1021/jacs.1c06735 |issn=0002-7863 |pmc=8377712 |pmid=34358426}}</ref> In fact, many analogs of this compound have been synthesized, often replacing the imine ''tert''-butyl groups with other bulky organic groups or replacing the two imine arms with disubstituted amine arms.<ref name=":7" /><ref name=":4">{{Cite journal |last1=Šimon |first1=Petr |last2=Jambor |first2=Roman |last3=Růžička |first3=Aleš |last4=Dostál |first4=Libor |date=2013-09-15 |title=Oxidative addition of organic disulfides to low valent N,C,N-chelated organobismuth(I) compound: Isolation, structure and coordination capability of substituted bismuth(III) bis(arylsulfides) |url=https://www.sciencedirect.com/science/article/pii/S0022328X13003732 |journal=Journal of Organometallic Chemistry |language=en |volume=740 |pages=98–103 |doi=10.1016/j.jorganchem.2013.05.005 |issn=0022-328X}}</ref>[[File:Synthesis of Dostal's Bismuthinidene.png|thumb|533x533px|Synthesis of Dostál's bismuthinidene, the most common example of an ''N'',''C'',''N''-chelated bismuthinidene.<ref name=":7" /><ref name=":12">{{Cite journal |last1=Vránová |first1=Iva |last2=Alonso |first2=Mercedes |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Erben |first5=Milan |last6=Dostál |first6=Libor |date=2016-05-23 |title=Stibinidene and Bismuthinidene as Two‐Electron Donors for Transition Metals (Co and Mn) |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201601272 |journal=Chemistry – A European Journal |language=en |volume=22 |issue=22 |pages=7376–7380 |doi=10.1002/chem.201601272 |pmid=26994732 |issn=0947-6539}}</ref>|center]]
Monomeric bismuthinidenes were not stabilized without the use of transition metal complexes until 2010, when Libor Dostál's research group reported the isolation of a bismuth(I) center stabilized only by the ''N'',''C'',''N''-[[Transition metal pincer complex|pincer ligand]] L = 2,6-bis[''N''-(2’,6’-dimethylphenyl)ketimino]phenyl.<ref name=":2" /> This complex was first synthesized by reacting the precursor molecule LBi<sup>III</sup>Cl<sub>2</sub> with two equivalents of the [[reducing agent]] K[B(''i''Bu)<sub>3</sub>H] to yield isolable crystals of stable [C<sub>6</sub>H<sub>3</sub>-2,6-(C(Me)=N-2′,6′-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>]Bi.<ref name=":2" /> A slightly simpler ''N'',''C'',''N''-chelating ligand was soon used to create the bismuthinidene [C<sub>6</sub>H<sub>3</sub>-2,6-(CH=N''t''Bu)<sub>2</sub>],<ref name=":7">{{Cite journal |last1=Vránová |first1=Iva |last2=Alonso |first2=Mercedes |last3=Lo |first3=Rabindranath |last4=Sedlák |first4=Robert |last5=Jambor |first5=Roman |last6=Růžička |first6=Aleš |last7=Proft |first7=Frank De |last8=Hobza |first8=Pavel |last9=Dostál |first9=Libor |date=2015-11-16 |title=From Dibismuthenes to Three- and Two-Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC 3 N Rings through a Combined Experimental and Theoretical Study |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201502724 |journal=Chemistry - A European Journal |language=en |volume=21 |issue=47 |pages=16917–16928 |doi=10.1002/chem.201502724 |pmid=26434943}}</ref><ref name=":12" /> which became widely used in later bismuthinidene studies and is occasionally referred to as "Dostál's bismuthinidene".<ref name=":14">{{Cite journal |last1=Pang |first1=Yue |last2=Leutzsch |first2=Markus |last3=Nöthling |first3=Nils |last4=Cornella |first4=Josep |date=2020-11-18 |title=Catalytic Activation of N 2 O at a Low-Valent Bismuth Redox Platform |journal=Journal of the American Chemical Society |language=en |volume=142 |issue=46 |pages=19473–19479 |doi=10.1021/jacs.0c10092 |issn=0002-7863 |pmc=7677929 |pmid=33146996}}</ref><ref name=":13">{{Cite journal |last1=Pang |first1=Yue |last2=Leutzsch |first2=Markus |last3=Nöthling |first3=Nils |last4=Katzenburg |first4=Felix |last5=Cornella |first5=Josep |date=2021-08-18 |title=Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers |journal=Journal of the American Chemical Society |language=en |volume=143 |issue=32 |pages=12487–12493 |doi=10.1021/jacs.1c06735 |issn=0002-7863 |pmc=8377712 |pmid=34358426}}</ref> In fact, many analogs of this compound have been synthesized, often replacing the imine ''tert''-butyl groups with other bulky organic groups or replacing the two imine arms with disubstituted amine arms.<ref name=":7" /><ref name=":4">{{Cite journal |last1=Šimon |first1=Petr |last2=Jambor |first2=Roman |last3=Růžička |first3=Aleš |last4=Dostál |first4=Libor |date=2013-09-15 |title=Oxidative addition of organic disulfides to low valent N,C,N-chelated organobismuth(I) compound: Isolation, structure and coordination capability of substituted bismuth(III) bis(arylsulfides) |url=https://www.sciencedirect.com/science/article/pii/S0022328X13003732 |journal=Journal of Organometallic Chemistry |language=en |volume=740 |pages=98–103 |doi=10.1016/j.jorganchem.2013.05.005 |issn=0022-328X}}</ref>[[File:Synthesis of Dostal's Bismuthinidene.png|thumb|615x615px|Synthesis of Dostál's bismuthinidene, the most common example of an ''N'',''C'',''N''-chelated bismuthinidene.<ref name=":7" /><ref name=":12">{{Cite journal |last1=Vránová |first1=Iva |last2=Alonso |first2=Mercedes |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Erben |first5=Milan |last6=Dostál |first6=Libor |date=2016-05-23 |title=Stibinidene and Bismuthinidene as Two‐Electron Donors for Transition Metals (Co and Mn) |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201601272 |journal=Chemistry – A European Journal |language=en |volume=22 |issue=22 |pages=7376–7380 |doi=10.1002/chem.201601272 |pmid=26994732 |issn=0947-6539}}</ref>|center]]
=== ''N'',''C''-chelated bismuthinidene ===
=== ''N'',''C''-chelated bismuthinidene ===
Dostál's group later synthesized a monomeric bismuthinidene coordinated only by a bidentate ''N'',''C''-chelating ligand.<ref name=":7" /> When the bismuth dichloride [C<sub>6</sub>H<sub>2</sub>-2-(CH=N-2’,6’-''i''Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-4,6-(tBu)<sub>2</sub>]BiCl<sub>2</sub> is reduced by two equivalents of K[B(''i''Bu)<sub>3</sub>H], isolable dark violet crystals of [C<sub>6</sub>H<sub>2</sub>-2-(CH=N-2’,6’-''i''Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-4,6-(tBu)<sub>2</sub>]Bi appear.<ref name=":7" /> In contrast to the earlier transition metal-stabilized [2-(Me<sub>2</sub>NCH2)C<sub>6</sub>H<sub>4</sub>]Bi[W(CO)<sub>5</sub>]<sub>2</sub>, the ''tert''-butyl group ''ortho'' to the bismuth atom in this ''N'',''C''-chelated bismuthinidene sterically block the partially empty p-type orbital on the bismuth atom, kinetically stabilizing it without the use of transition metals.<ref name=":7" /> In addition, calculated nucleus-independent chemical shift indices (NICS) and anisotropy of current-induced density (ACID) analysis show that the BiC<sub>3</sub>N ring of the molecule was stabilized by a certain degree of [[Aromaticity|aromatic]] character due and may be classified as a benzazabismole to the delocalization of six π electrons, despite the nominally dative Bi-N bond.<ref name=":16" /><ref name=":7" />[[File:Synthesis of N,C Bismuthinidene.png|thumb|544x544px|Synthesis of ''N'',''C''-chelated bismuthinidene, forming a single five-membered aromatic BiC<sub>3</sub>N ring.<ref name=":7" />|center]]
Dostál's group later synthesized a monomeric bismuthinidene coordinated only by a bidentate ''N'',''C''-chelating ligand.<ref name=":7" /> When the bismuth dichloride [C<sub>6</sub>H<sub>2</sub>-2-(CH=N-2’,6’-''i''Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-4,6-(tBu)<sub>2</sub>]BiCl<sub>2</sub> is reduced by two equivalents of K[B(''i''Bu)<sub>3</sub>H], isolable dark violet crystals of [C<sub>6</sub>H<sub>2</sub>-2-(CH=N-2’,6’-''i''Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-4,6-(tBu)<sub>2</sub>]Bi appear.<ref name=":7" /> In contrast to the earlier transition metal-stabilized [2-(Me<sub>2</sub>NCH2)C<sub>6</sub>H<sub>4</sub>]Bi[W(CO)<sub>5</sub>]<sub>2</sub>, the ''tert''-butyl group ''ortho'' to the bismuth atom in this ''N'',''C''-chelated bismuthinidene sterically block the partially empty p-type orbital on the bismuth atom, kinetically stabilizing it without the use of transition metals.<ref name=":7" /> In addition, calculated nucleus-independent chemical shift indices (NICS) and anisotropy of current-induced density (ACID) analysis show that the BiC<sub>3</sub>N ring of the molecule was stabilized by a certain degree of [[Aromaticity|aromatic]] character due and may be classified as a benzazabismole to the delocalization of six π electrons, despite the nominally [[Coordinate covalent bond|dative]] Bi-N bond.<ref name=":16" /><ref name=":7" /> Unlike N,C,N-coordinated bismuthinidenes, this N,C-coordinated species requires the pendant nitrogen atom to be in an imine group, as replacement of the Dipp-substituted imine arm with a diethyl-substituted amine arm resulted in rapid dimerization to a dibismuthene species.<ref name=":7" />[[File:Synthesis of N,C Bismuthinidene.png|thumb|611x611px|Synthesis of ''N'',''C''-chelated bismuthinidene, forming a single five-membered aromatic BiC<sub>3</sub>N ring.<ref name=":7" />|center]]
=== Carbene-stabilized bismuthinidene ===
=== Carbene-stabilized bismuthinidene ===
In 2019, Wang ''et al.'' isolated a novel [[carbene]]-stabilized bismuthinidene with an exocyclic bismuth(I) center.<ref name=":0" /> Phenylbismuth dichloride, stabilized by a diethyl/diisopropylphenyl-substituted cyclic alkyl amino carbene (<sup>Et2</sup>CAAC), reacts with one equivalent of the [[beryllium]](0) complex Be(<sup>Et2</sup>CAAC)<sub>2</sub> in toluene to give stable, isolable red crystals of the carbene-stabilized bismuthinidene (<sup>Et2</sup>CAAC)Bi-Ph. Despite the exposed, exocyclic bismuth(I) center, the compound can exist without dimerization for up to two weeks in the solid state. [[Density functional theory]] (DFT) calculations showed that this is a result of partial double bond character between the carbene carbon and the bismuth(I) center, wherein the p-type lone pair of electrons on the bismuth atom interact with the partially-filled p orbitals on the carbene carbon.<ref name=":0" /> However, the charge on the bismuth atom as determined by natural population analysis (NPA) was much lower than in bismuth(III)-carbon bonds, supporting the compound's classification as a bismuthinidene.<ref name=":0" />[[File:Synthesis of CAAC Bismuthinidene.png|thumb|548x548px|Synthesis of a CAAC carbene-stabilized bismuthinidene complex.<ref name=":0" />|center]]
In 2019, Wang ''et al.'' isolated a novel carbene-stabilized bismuthinidene with an exocyclic bismuth(I) center.<ref name=":0" /> Phenylbismuth dichloride, stabilized by a diethyl/diisopropylphenyl-substituted cyclic alkyl amino carbene (<sup>Et2</sup>CAAC), reacts with one equivalent of the [[beryllium]](0) complex Be(<sup>Et2</sup>CAAC)<sub>2</sub> in toluene to give stable, isolable red crystals of the carbene-stabilized bismuthinidene (<sup>Et2</sup>CAAC)Bi-Ph. Despite the exposed, exocyclic bismuth(I) center, the compound can exist without dimerization for up to two weeks in the solid state. [[Density functional theory]] (DFT) calculations showed that this is a result of partial double bond character between the carbene carbon and the bismuth(I) center, wherein the p-type lone pair of electrons on the bismuth atom interact with the partially-filled p orbitals on the carbene carbon.<ref name=":0" /> However, the charge on the bismuth atom as determined by natural population analysis (NPA) was much lower than in bismuth(III)-carbon bonds, supporting the compound's classification as a bismuthinidene.<ref name=":0" />[[File:Synthesis of CAAC Bismuthinidene.png|thumb|619x619px|Synthesis of a CAAC carbene-stabilized bismuthinidene complex.<ref name=":0" />|center]]
== Reactivity ==


== Structural Properties ==
=== Transfer hydrogenation of azoarenes ===
As with other heavier carbene analogs, the structural and electronic properties of bismuthinidenes are in large part driven by the [[inert-pair effect]], wherein the large energy gap between the bismuth atom’s 6s and 6p orbitals disfavors the formation of sp [[Orbital hybridisation|hybrid orbitals]].<ref>{{Cite journal |last=Wheeler |first=Ralph A. |last2=Kumar |first2=P. N. V. Pavan |date=1992-06 |title=Stereochemically active or inactive lone pair electrons in some six-coordinate, group 15 halides |url=https://pubs.acs.org/doi/abs/10.1021/ja00038a049 |journal=Journal of the American Chemical Society |language=en |volume=114 |issue=12 |pages=4776–4784 |doi=10.1021/ja00038a049 |issn=0002-7863}}</ref> In stark contrast to their lighter congeners [[Phosphinidene|phosphinidenes]], whose smaller [[phosphorus]] 3s-3p energy gap favors a [[Triplet state|triplet]] ground state,<ref>{{Cite journal |last=Lammertsma |first=Koop |title=Phosphinidenes |url=https://link.springer.com/chapter/10.1007/b11152 |journal=New Aspects in Phosphorus Chemistry III |language=en |pages=95–119 |doi=10.1007/b11152}}</ref> bismuthinidenes generally have a singlet ground state on account of the larger bismuth 6s-6p energy gap.<ref name=":8" />
Dostál's N,C,N-chelated bismuthinidene has been shown to cycle predictably between stable Bi(I) and Bi(III) oxidation states depending on the reaction conditions, giving it unique [[Catalysis|catalytic]] properties.<ref name=":14" /><ref name=":13" /><ref name=":17">{{Cite journal |last1=Xiao |first1=Wang-Chuan |last2=Tao |first2=Yun-Wen |last3=Luo |first3=Geng-Geng |date=2020-03-18 |title=Hydrogen formation using a synthetic heavier main-group bismuth-based electrocatalyst |url=https://www.sciencedirect.com/science/article/pii/S0360319920303293 |journal=International Journal of Hydrogen Energy |language=en |volume=45 |issue=15 |pages=8177–8185 |doi=10.1016/j.ijhydene.2020.01.152 |s2cid=213440010 |issn=0360-3199}}</ref><ref name=":3">{{Cite journal |last1=Wang |first1=Feng |last2=Planas |first2=Oriol |last3=Cornella |first3=Josep |date=2019-03-13 |title=Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane |journal=Journal of the American Chemical Society |language=en |volume=141 |issue=10 |pages=4235–4240 |doi=10.1021/jacs.9b00594 |issn=0002-7863 |pmc=6728098 |pmid=30816708}}</ref> Wang ''et al.'', who leveraged the catalytic activity of Dostál's bismuthinidene to catalyze a [[transfer hydrogenation]] reaction between ammonia-borane and [[Azo compound|azoarenes]] to form the corresponding [[Hydrazines|arylhydrazines]] with good functional group tolerance.<ref name=":3" /> The reaction's catalytic cycle proceeds through the [[oxidative addition]] of two [[hydrogen]] atoms from ammonia-borane to the bismuth(I) center, forming a highly unstable bismuthine intermediate.<ref name=":3" /><ref name=":15">{{Cite journal |last1=Balázs |first1=Gábor |last2=Breunig |first2=Hans Joachim |last3=Lork |first3=Enno |date=2002-06-01 |title=Synthesis and Characterization of R 2 SbH, R 2 BiH, and R 2 Bi−BiR 2 [R = (Me 3 Si) 2 CH] |url=https://pubs.acs.org/doi/10.1021/om020202z |journal=Organometallics |language=en |volume=21 |issue=13 |pages=2584–2586 |doi=10.1021/om020202z |issn=0276-7333}}</ref> Subsequent [[reductive elimination]] transfers the two hydrogen atoms across the [[pi bond]] of an azoarene molecule, restoring the bismuthinidene and forming arylhydrazine.<ref name=":3" /><ref>{{Cite journal |last1=Chu |first1=Terry |last2=Nikonov |first2=Georgii I. |date=2018-04-11 |title=Oxidative Addition and Reductive Elimination at Main-Group Element Centers |url=https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00572 |journal=Chemical Reviews |language=en |volume=118 |issue=7 |pages=3608–3680 |doi=10.1021/acs.chemrev.7b00572 |issn=0009-2665 |pmid=29558125}}</ref> A similar bismuthinidene-catalyzed transfer hydrogenation reaction reduces nitroarenes to the corresponding aryl hydroxyl amines.<ref name=":3" />


The structural and electronic properties of bismuthinidenes in general are clearly exemplified by Dostal’s N,C,N-stabilized bismuthinidene, which is the most commonly used bismuthinidene in the literature to date. Optimization of the ''tert''-butyl imino version of this compound at the M06/cc-pVTZ level of theory reveals that, as in other [[nontrigonal pnictogen compounds]], the central bismuth atom is [[Coplanarity|coplanar]] with the N,C,N-chelating ligand, adopting a T-shaped C<sub>2v</sub> coordination mode.<ref name=":7" /><ref>{{Cite journal |last=Zhao |first=Yan |last2=Truhlar |first2=Donald G. |date=2008-05-01 |title=The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals |url=https://doi.org/10.1007/s00214-007-0310-x |journal=Theoretical Chemistry Accounts |language=en |volume=120 |issue=1 |pages=215–241 |doi=10.1007/s00214-007-0310-x |issn=1432-2234}}</ref><ref>{{Cite journal |last=Dunning |first=Thom H. |date=1989-01-15 |title=Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen |url=https://aip.scitation.org/doi/10.1063/1.456153 |journal=The Journal of Chemical Physics |volume=90 |issue=2 |pages=1007–1023 |doi=10.1063/1.456153 |issn=0021-9606}}</ref><ref name=":6">{{Cite journal |last=Gimferrer |first=Martí |last2=Danés |first2=Sergi |last3=Andrada |first3=Diego M. |last4=Salvador |first4=Pedro |date=2021-12-06 |title=Unveiling the Electronic Structure of the Bi(+1)/Bi(+3) Redox Couple on NCN and NNN Pincer Complexes |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02252 |journal=Inorganic Chemistry |language=en |volume=60 |issue=23 |pages=17657–17668 |doi=10.1021/acs.inorgchem.1c02252 |issn=0020-1669 |pmc=PMC8653152 |pmid=34766771}}</ref> The Wiberg bond index (WBI) between the bismuth and carbon atoms is 1.09, while the Bi-C bond distance is 2.2156 Å, slightly shorter than the sum of these atoms’ single-bonded [[Covalent radius|covalent radii]] (Σ<sub>cov</sub>(Bi,C) = 2.26 Å).<ref name=":7" /><ref>{{Cite journal |last=Pyykkö |first=Pekka |date=2015-03-19 |title=Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary |url=https://pubs.acs.org/doi/10.1021/jp5065819 |journal=The Journal of Physical Chemistry A |language=en |volume=119 |issue=11 |pages=2326–2337 |doi=10.1021/jp5065819 |issn=1089-5639}}</ref> On the other hand, the WBI of the Bi-N bonds is only 0.34, and the Bi-N bond distance is 2.500 Å, significantly longer than the sum of these atoms’ covalent radii (Σ<sub>cov</sub>(Bi,N) = 2.22 Å). This agrees with calculations based on the [[Atoms in molecules|quantum theory of atoms in molecules]] (QTAIM), which show that the [[electron density]] at the bond critical point between Bi and N is only 0.049, significantly lower than the electron density of 0.114 at the Bi-C bond critical point.<ref name=":7" /><ref>{{Cite journal |last=Bader |first=Richard F. W. |date=1991-07-01 |title=A quantum theory of molecular structure and its applications |url=https://pubs.acs.org/doi/abs/10.1021/cr00005a013 |journal=Chemical Reviews |language=en |volume=91 |issue=5 |pages=893–928 |doi=10.1021/cr00005a013 |issn=0009-2665}}</ref> [[Natural bond orbital]] (NBO) calculations show that these weaker dative bonds arise from weak σ donation of the nitrogen atoms’ lone pairs into an empty 6p orbital on the central bismuth atom.<ref name=":7" /><ref>{{Cite journal |last=Weinhold |first=Frank |last2=Landis |first2=Clark R. |date=2001-05-01 |title=NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS |url=https://pubs.rsc.org/en/content/articlelanding/2001/rp/b1rp90011k |journal=Chemistry Education Research and Practice |language=en |volume=2 |issue=2 |pages=91–104 |doi=10.1039/B1RP90011K |issn=1756-1108}}</ref> These two n<sub>N</sub> → p*<sub>Bi</sub> interactions stabilize the bismuthinidene by as much as 382 kJ/mol. Additionally, the amount of sigma donation from the pendant nitrogen atoms may be increased or decreased by replacing the ''tert''-butyl groups on the pendant nitrogen atoms with aryl groups containing electron-donating groups or electron-withdrawing groups, respectively.<ref name=":7" /><ref name=":6" /> One lone pair resides in the bismuth atom’s 6s orbital and generally remains inert, while the other resides in the 6p orbital oriented perpendicular to the plane of the central ring, which also comprises the [[HOMO and LUMO|highest occupied molecular orbital]] (HOMO).
=== Deoxygenation of nitrous oxide ===
The Bi(I)/Bi(III) redox couple has also been applied to catalyze the [[deoxygenation]] of [[nitrous oxide]].<ref name=":14" /> When Dostál's bismuthinidene is exposed to gaseous N<sub>2</sub>O, the reaction mixture changes color from green to yellow and evolves dinitrogen gas. The color change is due to the formation of an arylbismuth oxide dimer with two ''μ''-oxo bridging moieties forming a Bi<sub>2</sub>O<sub>2</sub> center, consistent with the propensity of bismuth(III) oxides to spontaneously dimerize or polymerize.<ref name=":1" /><ref name=":14" /><ref>{{Cite book |last1=Suzuki |first1=Hitomi |url=https://books.google.com/books?id=qODswAbaBmsC&dq=Suzuki%2C+H.%3B++Komatsu%2C+N.%3B++Ogawa%2C+T.%3B++Murafuji%2C+T.%3B++Ikegami%2C+T.%3B+Matano%2C+Y.%2C+Organobismuth+chemistry.+Elsevier%3A+2001&pg=PP1 |title=Organobismuth Chemistry |last2=Komatsu |first2=Naoki |last3=Ogawa |first3=Takuji |last4=Murafuji |first4=Toshihiro |last5=Ikegami |first5=Tohru |last6=Matano |first6=Yoshihiro |date=2001-02-22 |publisher=Elsevier |isbn=978-0-08-053815-0 |language=en}}</ref><ref>{{Cite journal |last1=Strîmb |first1=Gabriela |last2=Pöllnitz |first2=Alpár |last3=Raţ |first3=Ciprian I. |last4=Silvestru |first4=Cristian |date=2015-05-21 |title=A general route to monoorganopnicogen(III) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands |url=https://pubs.rsc.org/en/content/articlelanding/2015/dt/c5dt00603a |journal=Dalton Transactions |language=en |volume=44 |issue=21 |pages=9927–9942 |doi=10.1039/C5DT00603A |issn=1477-9234 |pmid=25941006}}</ref><ref>{{Cite journal |last1=Matano |first1=Yoshihiro |last2=Nomura |first2=Hazumi |last3=Hisanaga |first3=Teppei |last4=Nakano |first4=Haruyuki |last5=Shiro |first5=Motoo |last6=Imahori |first6=Hiroshi |date=2004-11-01 |title=Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides |url=https://pubs.acs.org/doi/10.1021/om0494115 |journal=Organometallics |language=en |volume=23 |issue=23 |pages=5471–5480 |doi=10.1021/om0494115 |issn=0276-7333}}</ref> However, a modified version of Dostál's bismuthinidene with ketimine arms and [[M-Terphenyl|''m''-terphenyl]] substituents on the ketimine nitrogen atoms disfavors dimerization, instead forming a rare monomeric organobismuth(III) hydroxide upon reaction with N<sub>2</sub>O.<ref name=":14" /> In either case, reduction of the product with pinacolborane (HBpin) returns the bismuth(III) centers to the bismuth(I) state and yields a mixture of HOBpin and (pinB)<sub>2</sub>O, completing the catalytic cycle.<ref name=":14" />


== Reactivity ==
=== Reduction of dihydrogen from acetic acid ===
Theoretically, bismuthinidenes are both Lewis acidic and Lewis basic due to their empty and filled p-type orbitals, respectively. In practice, both N,C,N- and N,C-chelated bismuthinidenes lose much of their Lewis acidic character due to n<sub>N</sub> → p*<sub>Bi</sub> donor-acceptor interactions. However, the Lewis basicity of bismuthinidenes, particularly Dostál's N,C,N-chelated bismuthinidene, allows them to cycle predictably between stable Bi(I) and Bi(III) oxidation states depending on the reaction conditions, allowing them to act as [[Catalysis|catalysts]] for a variety of different reactions, including [[Transfer hydrogenation|transfer hydrogenations]], [[Deoxygenation|deoxygenations]], [[Hydrodefluorination|hydrodefluorinations]], and dihydrogen reduction.<ref name=":14" /><ref name=":13" /><ref name=":6" /><ref name=":17">{{Cite journal |last1=Xiao |first1=Wang-Chuan |last2=Tao |first2=Yun-Wen |last3=Luo |first3=Geng-Geng |date=2020-03-18 |title=Hydrogen formation using a synthetic heavier main-group bismuth-based electrocatalyst |url=https://www.sciencedirect.com/science/article/pii/S0360319920303293 |journal=International Journal of Hydrogen Energy |language=en |volume=45 |issue=15 |pages=8177–8185 |doi=10.1016/j.ijhydene.2020.01.152 |issn=0360-3199 |s2cid=213440010}}</ref><ref name=":3">{{Cite journal |last1=Wang |first1=Feng |last2=Planas |first2=Oriol |last3=Cornella |first3=Josep |date=2019-03-13 |title=Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane |journal=Journal of the American Chemical Society |language=en |volume=141 |issue=10 |pages=4235–4240 |doi=10.1021/jacs.9b00594 |issn=0002-7863 |pmc=6728098 |pmid=30816708}}</ref> In addition, bismuthinidenes react intrinsically with certain alkyl halides, dichalcogenides, and alkynes to form Bi(III) species.<ref name=":4" /><ref name=":18">{{Cite journal |last1=Hejda |first1=Martin |last2=Jirásko |first2=Robert |last3=Růžička |first3=Aleš |last4=Jambor |first4=Roman |last5=Dostál |first5=Libor |date=2020-12-14 |title=Probing the Limits of Oxidative Addition of C(sp 3 )–X Bonds toward Selected N,C,N -Chelated Bismuth(I) Compounds |url=https://pubs.acs.org/doi/10.1021/acs.organomet.0c00418 |journal=Organometallics |language=en |volume=39 |issue=23 |pages=4320–4328 |doi=10.1021/acs.organomet.0c00418 |issn=0276-7333 |s2cid=225479032}}</ref><ref name=":5">{{Cite journal |last1=Šimon |first1=Petr |last2=Jambor |first2=Roman |last3=Růžička |first3=Aleš |last4=Dostál |first4=Libor |date=2013-01-14 |title=Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds |url=https://pubs.acs.org/doi/10.1021/om3010383 |journal=Organometallics |language=en |volume=32 |issue=1 |pages=239–248 |doi=10.1021/om3010383 |issn=0276-7333}}</ref><ref name=":19" />[[File:Reactivity of N,C,N-chelated bismuthinidene.png|center|frameless|1156x1156px|Summary of the reactivity of Dostál's bismuthinidene.]]
Electrochemical studies indicate that Dostál's bismuthinidene may serve as an [[electrocatalyst]] for the formation of hydrogen gas.<ref name=":17" /> [[Cyclic voltammetry]] and DFT calculations indicate that, under reducing conditions, [[acetic acid]] binds to the central bismuth atom, transferring a hydrogen atom to bismuth and generating an N,C,N-chelated bismuth(III) acetate hydride intermediate.<ref name=":17" /> Rearrangement of the acetate ligand from the equatorial to the axial position allows a second equivalent of acetic acid to bind to the bismuth center, eliminating H<sub>2</sub> in the process.<ref name=":17" /> Two-electron reduction releases acetate ligands, regenerating the bismuthinidene catalyst.


=== Intrinsic Reactivity ===
=== Hydrodefluorination of polyfluoroarenes ===
[[File:Phebox-Bi Hydrodefluorination Cycle.png|thumb|379x379px|The catalytic cycle for the hydrodefluorination of polyfluoroarenes via Phebox-Bi(I) involves C-F oxidative addition (a), Bi(III)-F to Bi(III)-H ligand metathesis (b), and C-H reductive elimination (c).<ref name=":13" />]]
The electronic properties of the N,C,N-pincer ligand may be tuned with electron withdrawing groups to promote the reactivity of bismuthinidenes toward aryl C-F bonds.<ref name=":13" /> One example is Phebox-Bi(I), an N,C,N-chelated bismuthinidene stabilized by a 2,6-bis(oxazolinyl)phenyl (Phebox) pincer ligand. Unlike Dostál's bismuthinidene, which has only shown reactivity towards pentafluoropyridine, Phebox-Bi(I) has demonstrated a propensity to add to C-F bonds in a variety of perfluorinated arenes, including pentafluoropyridine, substituted pentafluorobenzenes, highly fluorinated phosphine compounds, octafluoronaphthalene, and decafluorobiphenyl.<ref name=":13" /> After oxidative addition to the aryl C-F bond, the resulting Phebox-Bi(III)(fluoroaryl) fluoride intermediate may undergo ligand metathesis with diethylsilane, replacing the Bi(III)-F bond with a Bi(III)-H bond. The unstable Bi(III) hydride then undergoes aryl C-H reductive elimination, regenerating Phebox-Bi(I) and the hydrodefluorinated product.<ref name=":13" /><ref name=":15" /> The catalyst usually targets C-F bonds ''para'' to any electron-withdrawing substituents or heteroatoms on the fluorinated substrate. Reaction rates decrease significantly when the fluorinated substrate contains an electron-donating group.


==== Transfer hydrogenation of azoarenes ====
=== Oxidative addition toward alkyl halides and diphenyldichalcogenides ===
In 2019, Wang ''et al.'', who leveraged the catalytic activity of Dostál's bismuthinidene to catalyze a transfer hydrogenation reaction between ammonia-borane and [[Azo compound|azoarenes]] to form the corresponding [[Hydrazines|arylhydrazines]] with good functional group tolerance.<ref name=":3" /> The reaction's catalytic cycle proceeds through the [[oxidative addition]] of two [[hydrogen]] atoms from ammonia-borane to the bismuth(I) center, forming a highly unstable bismuthine intermediate.<ref name=":3" /><ref name=":15">{{Cite journal |last1=Balázs |first1=Gábor |last2=Breunig |first2=Hans Joachim |last3=Lork |first3=Enno |date=2002-06-01 |title=Synthesis and Characterization of R 2 SbH, R 2 BiH, and R 2 Bi−BiR 2 [R = (Me 3 Si) 2 CH] |url=https://pubs.acs.org/doi/10.1021/om020202z |journal=Organometallics |language=en |volume=21 |issue=13 |pages=2584–2586 |doi=10.1021/om020202z |issn=0276-7333}}</ref> Subsequent [[reductive elimination]] transfers the two hydrogen atoms across the [[pi bond]] of an azoarene molecule, restoring the bismuthinidene and forming arylhydrazine.<ref name=":3" /><ref>{{Cite journal |last1=Chu |first1=Terry |last2=Nikonov |first2=Georgii I. |date=2018-04-11 |title=Oxidative Addition and Reductive Elimination at Main-Group Element Centers |url=https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00572 |journal=Chemical Reviews |language=en |volume=118 |issue=7 |pages=3608–3680 |doi=10.1021/acs.chemrev.7b00572 |issn=0009-2665 |pmid=29558125}}</ref> A similar bismuthinidene-catalyzed transfer hydrogenation reaction reduces nitroarenes to the corresponding aryl hydroxyl amines.<ref name=":3" />
The low valency of bismuthinidenes renders them reactive toward carbon-polar group bonds.<ref name=":18" /> Oxidative addition reactions between Dostál’s bismuthinidene and primary C(sp<sup>3</sup>)-X bonds are particularly favorable for X = I or OTf, converting the bismuth(I) center to a bismuth(III) alkyl halide or alkyl [[triflate]].<ref name=":18" /> This is true even for longer fluorinated alkyl halides up to six carbon atoms in length. Steric hindrance prevents the activation of ''tert''-butyl iodide by Dostal’s bismuthinidene, although a metastable analog with amine pincer arms rather than imine pincer arms does participate in oxidative addition even with bulky tertiary C-X bonds, likely because the increased rotational mobility of the amine arms allows them to rotate away from the incoming bulky alkyl group in the transition state.<ref name=":18" />


==== Deoxygenation of nitrous oxide ====
This metastable analog of Dostál’s bismuthinidene, as well as N,C-stabilized bismuthinidene, are also reactive toward diphenyldichalcogenides.<ref name=":4" /><ref name=":5" /> While the former yields stable crystals of [2,6-C<sub>6</sub>H<sub>3</sub>(CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>]Bi(III)(EPh)<sub>2</sub> (E = S, Se, Te) upon reaction with PhEEPh, the latter yields [2-C<sub>6</sub>H<sub>4</sub>(CH=NC<sub>6</sub>H<sub>3</sub>(''i''-Pr)<sub>2</sub>-2,6)]<sub>2</sub>Bi(III)(EPh) with two N,C ligands and only one phenyl chalcogenolate.<ref name=":5" /> Metastable N,C,N- and doubly N,C-chelated bismuth(III) phenyl tellurolates are particularly unstable and decompose to form a mixture of products. Oxidative additions of N,C,N-chelated bismuthinidene to diaryldisulfides are tolerant to a variety of aryl functional groups, including pyridyl, thiazolyl, thienyl, and aminophenyl groups.<ref name=":4" />
The Bi(I)/Bi(III) redox couple has also been applied to catalyze the deoxygenation of [[nitrous oxide]].<ref name=":14" />[[File:Phebox-Bi Hydrodefluorination Cycle.png|thumb|440x440px|The catalytic cycle for the hydrodefluorination of polyfluoroarenes via Phebox-Bi(I) involves C-F oxidative addition (a), Bi(III)-F to Bi(III)-H ligand metathesis (b), and C-H reductive elimination (c).<ref name=":13" />]]
When Dostál's bismuthinidene is exposed to gaseous N<sub>2</sub>O, the reaction mixture changes color from green to yellow and evolves dinitrogen gas. The color change is due to the formation of an arylbismuth oxide dimer with two ''μ''-oxo bridging moieties forming a Bi<sub>2</sub>O<sub>2</sub> center, consistent with the propensity of bismuth(III) oxides to spontaneously dimerize or polymerize.<ref name=":1" /><ref name=":14" /><ref>{{Cite book |last1=Suzuki |first1=Hitomi |url=https://books.google.com/books?id=qODswAbaBmsC&dq=Suzuki%2C+H.%3B++Komatsu%2C+N.%3B++Ogawa%2C+T.%3B++Murafuji%2C+T.%3B++Ikegami%2C+T.%3B+Matano%2C+Y.%2C+Organobismuth+chemistry.+Elsevier%3A+2001&pg=PP1 |title=Organobismuth Chemistry |last2=Komatsu |first2=Naoki |last3=Ogawa |first3=Takuji |last4=Murafuji |first4=Toshihiro |last5=Ikegami |first5=Tohru |last6=Matano |first6=Yoshihiro |date=2001-02-22 |publisher=Elsevier |isbn=978-0-08-053815-0 |language=en}}</ref><ref>{{Cite journal |last1=Strîmb |first1=Gabriela |last2=Pöllnitz |first2=Alpár |last3=Raţ |first3=Ciprian I. |last4=Silvestru |first4=Cristian |date=2015-05-21 |title=A general route to monoorganopnicogen(III) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands |url=https://pubs.rsc.org/en/content/articlelanding/2015/dt/c5dt00603a |journal=Dalton Transactions |language=en |volume=44 |issue=21 |pages=9927–9942 |doi=10.1039/C5DT00603A |issn=1477-9234 |pmid=25941006}}</ref><ref>{{Cite journal |last1=Matano |first1=Yoshihiro |last2=Nomura |first2=Hazumi |last3=Hisanaga |first3=Teppei |last4=Nakano |first4=Haruyuki |last5=Shiro |first5=Motoo |last6=Imahori |first6=Hiroshi |date=2004-11-01 |title=Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides |url=https://pubs.acs.org/doi/10.1021/om0494115 |journal=Organometallics |language=en |volume=23 |issue=23 |pages=5471–5480 |doi=10.1021/om0494115 |issn=0276-7333}}</ref> However, a modified version of Dostál's bismuthinidene with ketimine arms and [[M-Terphenyl|''m''-terphenyl]] substituents on the ketimine nitrogen atoms disfavors dimerization, instead forming a rare monomeric organobismuth(III) hydroxide upon reaction with N<sub>2</sub>O.<ref name=":14" /> In either case, reduction of the product with pinacolborane (HBpin) returns the bismuth(III) centers to the bismuth(I) state and yields a mixture of HOBpin and (pinB)<sub>2</sub>O, completing the catalytic cycle.<ref name=":14" />


==== Hydrodefluorination of polyfluoroarenes ====
=== Hetero Diels-Alder reaction with alkynes ===
The electronic properties of the N,C,N-pincer ligand may be tuned with electron withdrawing groups to promote the reactivity of bismuthinidenes toward aryl C-F bonds.<ref name=":13" /> One example is Phebox-Bi(I), an N,C,N-chelated bismuthinidene stabilized by a 2,6-bis(oxazolinyl)phenyl (Phebox) pincer ligand. Unlike Dostál's bismuthinidene, which has only shown reactivity towards pentafluoropyridine, Phebox-Bi(I) has demonstrated a propensity to add to C-F bonds in a variety of perfluorinated arenes, including pentafluoropyridine, substituted pentafluorobenzenes, highly fluorinated phosphine compounds, octafluoronaphthalene, and decafluorobiphenyl.<ref name=":13" /> After oxidative addition to the aryl C-F bond, the resulting Phebox-Bi(III)(fluoroaryl) fluoride intermediate may undergo ligand metathesis with diethylsilane, replacing the Bi(III)-F bond with a Bi(III)-H bond. The unstable Bi(III) hydride then undergoes aryl C-H reductive elimination, regenerating Phebox-Bi(I) and the hydrodefluorinated product.<ref name=":13" /><ref name=":15" /> The catalyst usually targets C-F bonds ''para'' to any electron-withdrawing substituents or heteroatoms on the fluorinated substrate. Reaction rates decrease significantly when the fluorinated substrate contains an electron-donating group.
In 2019, Kořenková ''et al.'' discovered that Dostál's bismuthinidene behaves as a masked [[Heterocyclic compound|heterocyclic]] diene in the presence of the electron-deficient [[alkyne]] [[dimethyl acetylenedicarboxylate]] (DMAD), performing a hetero [[Diels–Alder reaction|Diels-Alder]] [4+2] [[cycloaddition]] reaction to yield CO<sub>2</sub>Me-disubstituted 1-bisma-1,4-dihydro-iminonaphthalene, effectively converting one of the pendant imine arms of the bismuthinidene into a nitrogen-bridged bismacyclohexadiene, with the bismuth(III) atom serving as a bridgehead and the second imine arm largely losing coordination with the bismuth(III) center.<ref name=":19">{{Cite journal |last1=Kořenková |first1=Monika |last2=Kremláček |first2=Vít |last3=Hejda |first3=Martin |last4=Turek |first4=Jan |last5=Khudaverdyan |first5=Raffi |last6=Erben |first6=Milan |last7=Jambor |first7=Roman |last8=Růžička |first8=Aleš |last9=Dostál |first9=Libor |date=2020-01-22 |title=Hetero Diels–Alder Reactions of Masked Dienes Containing Heavy Group 15 Elements |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201904953 |journal=Chemistry – A European Journal |language=en |volume=26 |issue=5 |pages=1144–1154 |doi=10.1002/chem.201904953 |pmid=31769071 |s2cid=208299504 |issn=0947-6539}}</ref> A similar reaction with [[methyl propiolate]] yields an iminonaphthalene only as an intermediate, as the bridgehead bismuth atom is quickly attacked by a deprotonated second equivalent of methyl propiolate, breaking the Bi-N bond and yielding a [[Cyclohexane conformation#Boat and twist-boat conformations|boat]]-shaped bismacyclohexadiene moiety.<ref name=":19" /> Though technically unbridged, the axial amine group on the bismacyclohexadiene ring remains datively coordinated to the bismuth heteroatom.<ref name=":19" />


==== Reduction of dihydrogen from acetic acid ====
[[File:Reactivity of N,C,N-chelated bismuthinidene.png|center|frameless|1156x1156px]]
Electrochemical studies indicate that Dostál's bismuthinidene may serve as an [[electrocatalyst]] for the formation of hydrogen gas.<ref name=":17" /> [[Cyclic voltammetry]] and DFT calculations indicate that, under reducing conditions, [[acetic acid]] binds to the central bismuth atom, transferring a hydrogen atom to bismuth and generating an N,C,N-chelated bismuth(III) acetate hydride intermediate.<ref name=":17" /> Rearrangement of the acetate ligand from the equatorial to the axial position allows a second equivalent of acetic acid to bind to the bismuth center, eliminating H<sub>2</sub> in the process.<ref name=":17" /> Two-electron reduction releases acetate ligands, regenerating the bismuthinidene catalyst.


==== Oxidative addition toward alkyl halides and diphenyldichalcogenides ====
== Properties ==
The low valency of bismuthinidenes renders them reactive toward carbon-polar group bonds.<ref name=":18" /> Oxidative addition reactions between Dostál’s bismuthinidene and primary C(sp<sup>3</sup>)-X bonds are particularly favorable for X = I or OTf, converting the bismuth(I) center to a bismuth(III) alkyl halide or alkyl [[triflate]].<ref name=":18" /> This is true even for longer fluorinated alkyl halides up to six carbon atoms in length. Steric hindrance prevents the activation of [[Tert-butyl|''tert''-butyl]] iodide by Dostal’s bismuthinidene, although a metastable analog with amine pincer arms rather than imine pincer arms does participate in oxidative addition even with bulky tertiary C-X bonds, likely because the increased rotational mobility of the amine arms allows them to rotate away from the incoming bulky alkyl group in the transition state.<ref name=":18" />
[[File:Bisthmuthindenes intro.png|thumb|305x305px]]

=== Electrocatalytic properties ===
This metastable analog of Dostál’s bismuthinidene, as well as N,C-stabilized bismuthinidene, are also reactive toward diphenyldichalcogenides.<ref name=":4" /><ref name=":5" /> While the former yields stable crystals of [2,6-C<sub>6</sub>H<sub>3</sub>(CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>]Bi(III)(EPh)<sub>2</sub> (E = S, Se, Te) upon reaction with PhEEPh, the latter yields [2-C<sub>6</sub>H<sub>4</sub>(CH=NC<sub>6</sub>H<sub>3</sub>(''i''-Pr)<sub>2</sub>-2,6)]<sub>2</sub>Bi(III)(EPh) with two N,C ligands and only one phenyl chalcogenolate.<ref name=":5" /> Metastable N,C,N- and doubly N,C-chelated bismuth(III) phenyl tellurolates are particularly unstable and decompose to form a mixture of products. Oxidative additions of N,C,N-chelated bismuthinidene to diaryldisulfides are tolerant to a variety of aryl functional groups, including pyridyl, thiazolyl, thienyl, and aminophenyl groups.<ref name=":4" />
Bismuthindenes have been suggested to be involved in the [[electrochemical reduction]] of [[carbon dioxide]] at bismuth electrodes.<ref>{{Cite journal |last1=Thompson |first1=Michael C. |last2=Ramsay |first2=Jacob |last3=Weber |first3=J. Mathias |date=2016-11-21 |title=Solvent-Driven Reductive Activation of CO 2 by Bismuth: Switching from Metalloformate Complexes to Oxalate Products |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201607445 |journal=Angewandte Chemie International Edition |language=en |volume=55 |issue=48 |pages=15171–15174 |doi=10.1002/anie.201607445 |pmid=27730755}}</ref>
[[File:Bismuthinidene Diels-Alder Reaction.png|thumb|742x742px|Mechanism for the Diels-Alder reaction between Dostál's bismuthinidene and DMAD, with the diene region of the bismuthinidene highlighted in green. Note that the trivalent Bi-centered resonance structure contributes little to the overall structure and simply illustrates the hidden diene character of the compound.]]


==== Hetero Diels-Alder reaction with alkynes ====
The Bi(I)/Bi(III) couple redox events have been explored. Dostál has demonstrated that Lewis base-stabilized aryl-Bi(III) dihydrides undergo facile release of H<sub>2</sub> to generate the corresponding aryl-Bi(I) compounds,<ref name=":2" /><ref name=":7">{{Cite journal |last1=Vránová |first1=Iva |last2=Alonso |first2=Mercedes |last3=Lo |first3=Rabindranath |last4=Sedlák |first4=Robert |last5=Jambor |first5=Roman |last6=Růžička |first6=Aleš |last7=Proft |first7=Frank De |last8=Hobza |first8=Pavel |last9=Dostál |first9=Libor |date=2015-11-16 |title=From Dibismuthenes to Three- and Two-Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC 3 N Rings through a Combined Experimental and Theoretical Study |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201502724 |journal=Chemistry - A European Journal |language=en |volume=21 |issue=47 |pages=16917–16928 |doi=10.1002/chem.201502724|pmid=26434943 }}</ref> which are then amenable to oxidative addition to deliver Bi(III) species.<ref name=":4" /><ref name=":5">{{Cite journal |last1=Šimon |first1=Petr |last2=Jambor |first2=Roman |last3=Růžička |first3=Aleš |last4=Dostál |first4=Libor |date=2013-01-14 |title=Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds |url=https://pubs.acs.org/doi/10.1021/om3010383 |journal=Organometallics |language=en |volume=32 |issue=1 |pages=239–248 |doi=10.1021/om3010383 |issn=0276-7333}}</ref><ref name=":18">{{Cite journal |last1=Hejda |first1=Martin |last2=Jirásko |first2=Robert |last3=Růžička |first3=Aleš |last4=Jambor |first4=Roman |last5=Dostál |first5=Libor |date=2020-12-14 |title=Probing the Limits of Oxidative Addition of C(sp 3 )–X Bonds toward Selected N,C,N -Chelated Bismuth(I) Compounds |url=https://pubs.acs.org/doi/10.1021/acs.organomet.0c00418 |journal=Organometallics |language=en |volume=39 |issue=23 |pages=4320–4328 |doi=10.1021/acs.organomet.0c00418 |s2cid=225479032 |issn=0276-7333}}</ref> Bismuth(III) alkoxides also undergo Bi–O homolysis in certain cases,<ref>{{Cite journal |last1=Ishida |first1=Shintaro |last2=Hirakawa |first2=Fumiya |last3=Furukawa |first3=Ko |last4=Yoza |first4=Kenji |last5=Iwamoto |first5=Takeaki |date=2014-10-13 |title=Persistent Antimony- and Bismuth-Centered Radicals in Solution |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201405509 |journal=Angewandte Chemie International Edition |language=en |volume=53 |issue=42 |pages=11172–11176 |doi=10.1002/anie.201405509|pmid=25066471 }}</ref><ref>{{Cite journal |last1=Schwamm |first1=Ryan J. |last2=Harmer |first2=Jeffrey R. |last3=Lein |first3=Matthias |last4=Fitchett |first4=Christopher M. |last5=Granville |first5=Simon |last6=Coles |first6=Martyn P. |date=2015-09-01 |title=Isolation and Characterization of a Bismuth(II) Radical |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201504632 |journal=Angewandte Chemie International Edition |language=en |volume=54 |issue=36 |pages=10630–10633 |doi=10.1002/anie.201504632|pmid=26215838 }}</ref> a potentially relevant step in the SOHIO ammoxidation process for the synthesis of acrylonitrile from propylene.<ref>{{Cite journal |last1=Callahan |first1=James L. |last2=Grasselli |first2=Robert K. |last3=Milberger |first3=Ernest C. |last4=Strecker |first4=H. Arthur |date=June 1970 |title=Oxidation and Ammoxidation of Propylene over Bismuth Molybdate Catalyst |url=http://dx.doi.org/10.1021/i360034a003 |journal=Product R&D |volume=9 |issue=2 |pages=134–142 |doi=10.1021/i360034a003 |issn=0091-1968}}</ref><ref>{{Cite journal |last1=Pudar |first1=Sanja |last2=Oxgaard |first2=Jonas |last3=Goddard |first3=William A. |date=2010-09-23 |title=Mechanism of Selective Ammoxidation of Propene to Acrylonitrile on Bismuth Molybdates from Quantum Mechanical Calculations |url=https://pubs.acs.org/doi/10.1021/jp103054x |journal=The Journal of Physical Chemistry C |language=en |volume=114 |issue=37 |pages=15678–15694 |doi=10.1021/jp103054x |issn=1932-7447}}</ref><ref name=":6">{{Cite journal |last1=Licht |first1=Rachel B. |last2=Bell |first2=Alexis T. |date=2017-01-06 |title=A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate |url=https://pubs.acs.org/doi/10.1021/acscatal.6b02523 |journal=ACS Catalysis |language=en |volume=7 |issue=1 |pages=161–176 |doi=10.1021/acscatal.6b02523 |issn=2155-5435 |osti=1416914 |s2cid=99398496}}</ref>
In 2019, Kořenková ''et al.'' discovered that Dostál's bismuthinidene behaves as a masked [[Heterocyclic compound|heterocyclic]] diene in the presence of the electron-deficient [[alkyne]] [[dimethyl acetylenedicarboxylate]] (DMAD), performing a hetero [[Diels–Alder reaction|Diels-Alder]] [4+2] [[cycloaddition]] reaction to yield CO<sub>2</sub>Me-disubstituted 1-bisma-1,4-dihydro-iminonaphthalene, effectively converting one of the pendant imine arms of the bismuthinidene into a nitrogen-bridged bismacyclohexadiene, with the bismuth(III) atom serving as a bridgehead and the second imine arm largely losing coordination with the bismuth(III) center.<ref name=":19">{{Cite journal |last1=Kořenková |first1=Monika |last2=Kremláček |first2=Vít |last3=Hejda |first3=Martin |last4=Turek |first4=Jan |last5=Khudaverdyan |first5=Raffi |last6=Erben |first6=Milan |last7=Jambor |first7=Roman |last8=Růžička |first8=Aleš |last9=Dostál |first9=Libor |date=2020-01-22 |title=Hetero Diels–Alder Reactions of Masked Dienes Containing Heavy Group 15 Elements |url=https://onlinelibrary.wiley.com/doi/10.1002/chem.201904953 |journal=Chemistry – A European Journal |language=en |volume=26 |issue=5 |pages=1144–1154 |doi=10.1002/chem.201904953 |pmid=31769071 |s2cid=208299504 |issn=0947-6539}}</ref> Energy profiles generaed by theoretical studies show that the free energy barrier between the 1-bisma-1,4-dihydro-iminonaphthalene species and its corresponding bismanaphthalene is only 6.7 kJ/mol. A similar cycloaddition reaction between Dostál's bismuthinidene and [[methyl propiolate]] yields an iminonaphthalene only as an intermediate, as the bridgehead bismuth atom is quickly attacked by a deprotonated second equivalent of methyl propiolate, breaking the Bi-N bond and yielding a [[Cyclohexane conformation#Boat and twist-boat conformations|boat]]-shaped bismacyclohexadiene moiety.<ref name=":19" /> Though technically unbridged, the axial amine group on the bismacyclohexadiene ring remains datively coordinated to the bismuth heteroatom.


== References ==
== References ==

Revision as of 20:14, 10 December 2022

General structure of a bismuthinidene.

Bismuthinidenes are a class of organobismuth compounds, analogous to carbenes. These compounds have the general form R-Bi, with two lone pairs of electrons on the central bismuth(I) atom.[1] Due to the unusually low valency and oxidation state of +1, most bismuthinidenes are reactive and unstable,[2] though in recent decades, both transition metals and polydentate chelating Lewis base ligands have been employed to stabilize the low-valent bismuth(I) center through steric protection and π donation either in solution or in crystal structures.[1][3][4] Lewis base-stabilized bismuthinidenes adopt a singlet ground state with an inert lone pair of electrons in the 6s orbital.[1] A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.[3]

Synthesis

Transition metal-stabilized bismuthinidene

The earliest examples of bismuthinidene complexes used transition metal chemistry to stabilize the Bi(I) center.[5][6][7][8] These methods generally leveraged the ability of simple bismuth(I) halides or methylbismuth to ligate to tungsten, manganese, and chromium carbonyl complexes. These complexes were occasionally found to oligomerize, forming Bi-Bi single or double bonds to form bismuthane or bismuthene moieties.[5][6][9] One of the first examples of a monomeric bismuthinidene was discovered by Balasz et al., who used R = 2-(dimethylaminomethyl)phenyl to chelate a Bi(I) center through a combination of strong C-Bi and weak N-Bi interactions.[10] Although the molecule quickly formed a cyclic oligomer, upon reaction with two equivalents of tungsten pentacarbonyl, monomeric crystalline RBi[W(CO)5]2 was isolated.[10]

Synthesis of an early example of monomeric bismuthinidene.[10]

N,C,N-chelated bismuthinidene

Monomeric bismuthinidenes were not stabilized without the use of transition metal complexes until 2010, when Libor Dostál's research group reported the isolation of a bismuth(I) center stabilized only by the N,C,N-pincer ligand L = 2,6-bis[N-(2’,6’-dimethylphenyl)ketimino]phenyl.[3] This complex was first synthesized by reacting the precursor molecule LBiIIICl2 with two equivalents of the reducing agent K[B(iBu)3H] to yield isolable crystals of stable [C6H3-2,6-(C(Me)=N-2′,6′-Me2C6H3)2]Bi.[3] A slightly simpler N,C,N-chelating ligand was soon used to create the bismuthinidene [C6H3-2,6-(CH=NtBu)2],[11][12] which became widely used in later bismuthinidene studies and is occasionally referred to as "Dostál's bismuthinidene".[13][14] In fact, many analogs of this compound have been synthesized, often replacing the imine tert-butyl groups with other bulky organic groups or replacing the two imine arms with disubstituted amine arms.[11][15]

Synthesis of Dostál's bismuthinidene, the most common example of an N,C,N-chelated bismuthinidene.[11][12]

N,C-chelated bismuthinidene

Dostál's group later synthesized a monomeric bismuthinidene coordinated only by a bidentate N,C-chelating ligand.[11] When the bismuth dichloride [C6H2-2-(CH=N-2’,6’-iPr2C6H3)-4,6-(tBu)2]BiCl2 is reduced by two equivalents of K[B(iBu)3H], isolable dark violet crystals of [C6H2-2-(CH=N-2’,6’-iPr2C6H3)-4,6-(tBu)2]Bi appear.[11] In contrast to the earlier transition metal-stabilized [2-(Me2NCH2)C6H4]Bi[W(CO)5]2, the tert-butyl group ortho to the bismuth atom in this N,C-chelated bismuthinidene sterically block the partially empty p-type orbital on the bismuth atom, kinetically stabilizing it without the use of transition metals.[11] In addition, calculated nucleus-independent chemical shift indices (NICS) and anisotropy of current-induced density (ACID) analysis show that the BiC3N ring of the molecule was stabilized by a certain degree of aromatic character due and may be classified as a benzazabismole to the delocalization of six π electrons, despite the nominally dative Bi-N bond.[4][11] Unlike N,C,N-coordinated bismuthinidenes, this N,C-coordinated species requires the pendant nitrogen atom to be in an imine group, as replacement of the Dipp-substituted imine arm with a diethyl-substituted amine arm resulted in rapid dimerization to a dibismuthene species.[11]

Synthesis of N,C-chelated bismuthinidene, forming a single five-membered aromatic BiC3N ring.[11]

Carbene-stabilized bismuthinidene

In 2019, Wang et al. isolated a novel carbene-stabilized bismuthinidene with an exocyclic bismuth(I) center.[2] Phenylbismuth dichloride, stabilized by a diethyl/diisopropylphenyl-substituted cyclic alkyl amino carbene (Et2CAAC), reacts with one equivalent of the beryllium(0) complex Be(Et2CAAC)2 in toluene to give stable, isolable red crystals of the carbene-stabilized bismuthinidene (Et2CAAC)Bi-Ph. Despite the exposed, exocyclic bismuth(I) center, the compound can exist without dimerization for up to two weeks in the solid state. Density functional theory (DFT) calculations showed that this is a result of partial double bond character between the carbene carbon and the bismuth(I) center, wherein the p-type lone pair of electrons on the bismuth atom interact with the partially-filled p orbitals on the carbene carbon.[2] However, the charge on the bismuth atom as determined by natural population analysis (NPA) was much lower than in bismuth(III)-carbon bonds, supporting the compound's classification as a bismuthinidene.[2]

Synthesis of a CAAC carbene-stabilized bismuthinidene complex.[2]

Structural Properties

As with other heavier carbene analogs, the structural and electronic properties of bismuthinidenes are in large part driven by the inert-pair effect, wherein the large energy gap between the bismuth atom’s 6s and 6p orbitals disfavors the formation of sp hybrid orbitals.[16] In stark contrast to their lighter congeners phosphinidenes, whose smaller phosphorus 3s-3p energy gap favors a triplet ground state,[17] bismuthinidenes generally have a singlet ground state on account of the larger bismuth 6s-6p energy gap.[1]

The structural and electronic properties of bismuthinidenes in general are clearly exemplified by Dostal’s N,C,N-stabilized bismuthinidene, which is the most commonly used bismuthinidene in the literature to date. Optimization of the tert-butyl imino version of this compound at the M06/cc-pVTZ level of theory reveals that, as in other nontrigonal pnictogen compounds, the central bismuth atom is coplanar with the N,C,N-chelating ligand, adopting a T-shaped C2v coordination mode.[11][18][19][20] The Wiberg bond index (WBI) between the bismuth and carbon atoms is 1.09, while the Bi-C bond distance is 2.2156 Å, slightly shorter than the sum of these atoms’ single-bonded covalent radiicov(Bi,C) = 2.26 Å).[11][21] On the other hand, the WBI of the Bi-N bonds is only 0.34, and the Bi-N bond distance is 2.500 Å, significantly longer than the sum of these atoms’ covalent radii (Σcov(Bi,N) = 2.22 Å). This agrees with calculations based on the quantum theory of atoms in molecules (QTAIM), which show that the electron density at the bond critical point between Bi and N is only 0.049, significantly lower than the electron density of 0.114 at the Bi-C bond critical point.[11][22] Natural bond orbital (NBO) calculations show that these weaker dative bonds arise from weak σ donation of the nitrogen atoms’ lone pairs into an empty 6p orbital on the central bismuth atom.[11][23] These two nN → p*Bi interactions stabilize the bismuthinidene by as much as 382 kJ/mol. Additionally, the amount of sigma donation from the pendant nitrogen atoms may be increased or decreased by replacing the tert-butyl groups on the pendant nitrogen atoms with aryl groups containing electron-donating groups or electron-withdrawing groups, respectively.[11][20] One lone pair resides in the bismuth atom’s 6s orbital and generally remains inert, while the other resides in the 6p orbital oriented perpendicular to the plane of the central ring, which also comprises the highest occupied molecular orbital (HOMO).

Reactivity

Theoretically, bismuthinidenes are both Lewis acidic and Lewis basic due to their empty and filled p-type orbitals, respectively. In practice, both N,C,N- and N,C-chelated bismuthinidenes lose much of their Lewis acidic character due to nN → p*Bi donor-acceptor interactions. However, the Lewis basicity of bismuthinidenes, particularly Dostál's N,C,N-chelated bismuthinidene, allows them to cycle predictably between stable Bi(I) and Bi(III) oxidation states depending on the reaction conditions, allowing them to act as catalysts for a variety of different reactions, including transfer hydrogenations, deoxygenations, hydrodefluorinations, and dihydrogen reduction.[13][14][20][24][25] In addition, bismuthinidenes react intrinsically with certain alkyl halides, dichalcogenides, and alkynes to form Bi(III) species.[15][26][27][28]

Summary of the reactivity of Dostál's bismuthinidene.
Summary of the reactivity of Dostál's bismuthinidene.

Intrinsic Reactivity

Transfer hydrogenation of azoarenes

In 2019, Wang et al., who leveraged the catalytic activity of Dostál's bismuthinidene to catalyze a transfer hydrogenation reaction between ammonia-borane and azoarenes to form the corresponding arylhydrazines with good functional group tolerance.[25] The reaction's catalytic cycle proceeds through the oxidative addition of two hydrogen atoms from ammonia-borane to the bismuth(I) center, forming a highly unstable bismuthine intermediate.[25][29] Subsequent reductive elimination transfers the two hydrogen atoms across the pi bond of an azoarene molecule, restoring the bismuthinidene and forming arylhydrazine.[25][30] A similar bismuthinidene-catalyzed transfer hydrogenation reaction reduces nitroarenes to the corresponding aryl hydroxyl amines.[25]

Deoxygenation of nitrous oxide

The Bi(I)/Bi(III) redox couple has also been applied to catalyze the deoxygenation of nitrous oxide.[13]

The catalytic cycle for the hydrodefluorination of polyfluoroarenes via Phebox-Bi(I) involves C-F oxidative addition (a), Bi(III)-F to Bi(III)-H ligand metathesis (b), and C-H reductive elimination (c).[14]

When Dostál's bismuthinidene is exposed to gaseous N2O, the reaction mixture changes color from green to yellow and evolves dinitrogen gas. The color change is due to the formation of an arylbismuth oxide dimer with two μ-oxo bridging moieties forming a Bi2O2 center, consistent with the propensity of bismuth(III) oxides to spontaneously dimerize or polymerize.[9][13][31][32][33] However, a modified version of Dostál's bismuthinidene with ketimine arms and m-terphenyl substituents on the ketimine nitrogen atoms disfavors dimerization, instead forming a rare monomeric organobismuth(III) hydroxide upon reaction with N2O.[13] In either case, reduction of the product with pinacolborane (HBpin) returns the bismuth(III) centers to the bismuth(I) state and yields a mixture of HOBpin and (pinB)2O, completing the catalytic cycle.[13]

Hydrodefluorination of polyfluoroarenes

The electronic properties of the N,C,N-pincer ligand may be tuned with electron withdrawing groups to promote the reactivity of bismuthinidenes toward aryl C-F bonds.[14] One example is Phebox-Bi(I), an N,C,N-chelated bismuthinidene stabilized by a 2,6-bis(oxazolinyl)phenyl (Phebox) pincer ligand. Unlike Dostál's bismuthinidene, which has only shown reactivity towards pentafluoropyridine, Phebox-Bi(I) has demonstrated a propensity to add to C-F bonds in a variety of perfluorinated arenes, including pentafluoropyridine, substituted pentafluorobenzenes, highly fluorinated phosphine compounds, octafluoronaphthalene, and decafluorobiphenyl.[14] After oxidative addition to the aryl C-F bond, the resulting Phebox-Bi(III)(fluoroaryl) fluoride intermediate may undergo ligand metathesis with diethylsilane, replacing the Bi(III)-F bond with a Bi(III)-H bond. The unstable Bi(III) hydride then undergoes aryl C-H reductive elimination, regenerating Phebox-Bi(I) and the hydrodefluorinated product.[14][29] The catalyst usually targets C-F bonds para to any electron-withdrawing substituents or heteroatoms on the fluorinated substrate. Reaction rates decrease significantly when the fluorinated substrate contains an electron-donating group.

Reduction of dihydrogen from acetic acid

Electrochemical studies indicate that Dostál's bismuthinidene may serve as an electrocatalyst for the formation of hydrogen gas.[24] Cyclic voltammetry and DFT calculations indicate that, under reducing conditions, acetic acid binds to the central bismuth atom, transferring a hydrogen atom to bismuth and generating an N,C,N-chelated bismuth(III) acetate hydride intermediate.[24] Rearrangement of the acetate ligand from the equatorial to the axial position allows a second equivalent of acetic acid to bind to the bismuth center, eliminating H2 in the process.[24] Two-electron reduction releases acetate ligands, regenerating the bismuthinidene catalyst.

Oxidative addition toward alkyl halides and diphenyldichalcogenides

The low valency of bismuthinidenes renders them reactive toward carbon-polar group bonds.[26] Oxidative addition reactions between Dostál’s bismuthinidene and primary C(sp3)-X bonds are particularly favorable for X = I or OTf, converting the bismuth(I) center to a bismuth(III) alkyl halide or alkyl triflate.[26] This is true even for longer fluorinated alkyl halides up to six carbon atoms in length. Steric hindrance prevents the activation of tert-butyl iodide by Dostal’s bismuthinidene, although a metastable analog with amine pincer arms rather than imine pincer arms does participate in oxidative addition even with bulky tertiary C-X bonds, likely because the increased rotational mobility of the amine arms allows them to rotate away from the incoming bulky alkyl group in the transition state.[26]

This metastable analog of Dostál’s bismuthinidene, as well as N,C-stabilized bismuthinidene, are also reactive toward diphenyldichalcogenides.[15][27] While the former yields stable crystals of [2,6-C6H3(CH2NMe2)2]Bi(III)(EPh)2 (E = S, Se, Te) upon reaction with PhEEPh, the latter yields [2-C6H4(CH=NC6H3(i-Pr)2-2,6)]2Bi(III)(EPh) with two N,C ligands and only one phenyl chalcogenolate.[27] Metastable N,C,N- and doubly N,C-chelated bismuth(III) phenyl tellurolates are particularly unstable and decompose to form a mixture of products. Oxidative additions of N,C,N-chelated bismuthinidene to diaryldisulfides are tolerant to a variety of aryl functional groups, including pyridyl, thiazolyl, thienyl, and aminophenyl groups.[15]

Mechanism for the Diels-Alder reaction between Dostál's bismuthinidene and DMAD, with the diene region of the bismuthinidene highlighted in green. Note that the trivalent Bi-centered resonance structure contributes little to the overall structure and simply illustrates the hidden diene character of the compound.

Hetero Diels-Alder reaction with alkynes

In 2019, Kořenková et al. discovered that Dostál's bismuthinidene behaves as a masked heterocyclic diene in the presence of the electron-deficient alkyne dimethyl acetylenedicarboxylate (DMAD), performing a hetero Diels-Alder [4+2] cycloaddition reaction to yield CO2Me-disubstituted 1-bisma-1,4-dihydro-iminonaphthalene, effectively converting one of the pendant imine arms of the bismuthinidene into a nitrogen-bridged bismacyclohexadiene, with the bismuth(III) atom serving as a bridgehead and the second imine arm largely losing coordination with the bismuth(III) center.[28] Energy profiles generaed by theoretical studies show that the free energy barrier between the 1-bisma-1,4-dihydro-iminonaphthalene species and its corresponding bismanaphthalene is only 6.7 kJ/mol. A similar cycloaddition reaction between Dostál's bismuthinidene and methyl propiolate yields an iminonaphthalene only as an intermediate, as the bridgehead bismuth atom is quickly attacked by a deprotonated second equivalent of methyl propiolate, breaking the Bi-N bond and yielding a boat-shaped bismacyclohexadiene moiety.[28] Though technically unbridged, the axial amine group on the bismacyclohexadiene ring remains datively coordinated to the bismuth heteroatom.

References

  1. ^ a b c d Mukhopadhyay, Deb Pratim; Schleier, Domenik; Wirsing, Sara; Ramler, Jacqueline; Kaiser, Dustin; Reusch, Engelbert; Hemberger, Patrick; Preitschopf, Tobias; Krummenacher, Ivo; Engels, Bernd; Fischer, Ingo; Lichtenberg, Crispin (2020-07-29). "Methylbismuth: an organometallic bismuthinidene biradical". Chemical Science. 11 (29): 7562–7568. doi:10.1039/D0SC02410D. ISSN 2041-6539. PMC 7450715. PMID 32874526.
  2. ^ a b c d e Wang, Guocang; Freeman, Lucas A.; Dickie, Diane A.; Mokrai, Réka; Benkő, Zoltán; Gilliard, Robert J. (2019-03-21). "Isolation of Cyclic(Alkyl)(Amino) Carbene–Bismuthinidene Mediated by a Beryllium(0) Complex". Chemistry – A European Journal. 25 (17): 4335–4339. doi:10.1002/chem.201900458. ISSN 0947-6539. PMC 6593863. PMID 30706565.
  3. ^ a b c d Šimon, Petr; de Proft, Frank; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2010-07-02). "Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures". Angewandte Chemie International Edition. 49 (32): 5468–5471. doi:10.1002/anie.201002209. PMID 20602393.
  4. ^ a b Dostál, Libor (2017-12-15). "Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds". Coordination Chemistry Reviews. 353: 142–158. doi:10.1016/j.ccr.2017.10.009. ISSN 0010-8545.
  5. ^ a b Arif, Atta M.; Cowley, Alan H.; Norman, Nicholas C.; Pakulski, Marek (1985). "A tungsten-bismuth cluster featuring dibismuth as a four-electron donor and a bridging bismuthinidene". Journal of the American Chemical Society. 107 (4): 1062–1063. doi:10.1021/ja00290a054. ISSN 0002-7863.
  6. ^ a b Arif, A. M.; Cowley, A. H.; Norman, N. C.; Pakulski, M. (1986). "Reactivity of bulky alkyldichlorostibines and alkyldichlorobismuthines toward [W(CO)5]2-: synthesis of compounds containing stibinidene, bismuthinidene, and dibismuth ligands". Inorganic Chemistry. 25 (27): 4836–4840. doi:10.1021/ic00247a012. ISSN 0020-1669.
  7. ^ Davies, Simon J.; Compton, Neville A.; Huttner, Gottfried; Zsolnai, Laszlo; Garner, Stephanie E. (1991). "Synthesis and Reactivity of "Bismuthinidene" Compounds and the Formation of Bi 1 Chelate Complexes". Chemische Berichte. 124 (12): 2731–2738. doi:10.1002/cber.19911241214. ISSN 0009-2940.
  8. ^ Shieh, Minghuey; Cherng, Jiann-Jang; Lai, Yun-Wen; Ueng, Chuen-Her; Peng, Shie-Ming; Liu, Yi-Hung (2002-10-04). <4522::aid-chem4522>3.0.co;2-7 "Carbonylchromium Derivatives of Bismuth: New Syntheses and Relevance to CO Activation". Chemistry - A European Journal. 8 (19): 4522–4527. doi:10.1002/1521-3765(20021004)8:19<4522::aid-chem4522>3.0.co;2-7. ISSN 0947-6539. PMID 12355541.
  9. ^ a b Tokitoh, Norihiro; Arai, Yoshimitsu; Okazaki, Renji; Nagase, Shigeru (1997-07-04). "Synthesis and Characterization of a Stable Dibismuthene: Evidence for a Bi-Bi Double Bond". Science. 277 (5322): 78–80. doi:10.1126/science.277.5322.78. ISSN 0036-8075.
  10. ^ a b c Balazs, Lucia; Breunig, Hans J.; Lork, Enno; Silvestru, Cristian (2003). "Low‐Valent Organobismuth Compounds with Intramolecular Coordination: cyclo ‐R 3 Bi 3 , cyclo ‐R 4 Bi 4 , RBi[W(CO) 5 ] 2 , and R 4 Bi 2 [R = 2‐(Me 2 NCH 2 )C 6 H 4 ]". European Journal of Inorganic Chemistry. 2003 (7): 1361–1365. doi:10.1002/ejic.200390176. ISSN 1434-1948.
  11. ^ a b c d e f g h i j k l m n Vránová, Iva; Alonso, Mercedes; Lo, Rabindranath; Sedlák, Robert; Jambor, Roman; Růžička, Aleš; Proft, Frank De; Hobza, Pavel; Dostál, Libor (2015-11-16). "From Dibismuthenes to Three- and Two-Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC 3 N Rings through a Combined Experimental and Theoretical Study". Chemistry - A European Journal. 21 (47): 16917–16928. doi:10.1002/chem.201502724. PMID 26434943.
  12. ^ a b Vránová, Iva; Alonso, Mercedes; Jambor, Roman; Růžička, Aleš; Erben, Milan; Dostál, Libor (2016-05-23). "Stibinidene and Bismuthinidene as Two‐Electron Donors for Transition Metals (Co and Mn)". Chemistry – A European Journal. 22 (22): 7376–7380. doi:10.1002/chem.201601272. ISSN 0947-6539. PMID 26994732.
  13. ^ a b c d e f Pang, Yue; Leutzsch, Markus; Nöthling, Nils; Cornella, Josep (2020-11-18). "Catalytic Activation of N 2 O at a Low-Valent Bismuth Redox Platform". Journal of the American Chemical Society. 142 (46): 19473–19479. doi:10.1021/jacs.0c10092. ISSN 0002-7863. PMC 7677929. PMID 33146996.
  14. ^ a b c d e f Pang, Yue; Leutzsch, Markus; Nöthling, Nils; Katzenburg, Felix; Cornella, Josep (2021-08-18). "Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers". Journal of the American Chemical Society. 143 (32): 12487–12493. doi:10.1021/jacs.1c06735. ISSN 0002-7863. PMC 8377712. PMID 34358426.
  15. ^ a b c d Šimon, Petr; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2013-09-15). "Oxidative addition of organic disulfides to low valent N,C,N-chelated organobismuth(I) compound: Isolation, structure and coordination capability of substituted bismuth(III) bis(arylsulfides)". Journal of Organometallic Chemistry. 740: 98–103. doi:10.1016/j.jorganchem.2013.05.005. ISSN 0022-328X.
  16. ^ Wheeler, Ralph A.; Kumar, P. N. V. Pavan (1992-06). "Stereochemically active or inactive lone pair electrons in some six-coordinate, group 15 halides". Journal of the American Chemical Society. 114 (12): 4776–4784. doi:10.1021/ja00038a049. ISSN 0002-7863. {{cite journal}}: Check date values in: |date= (help)
  17. ^ Lammertsma, Koop. "Phosphinidenes". New Aspects in Phosphorus Chemistry III: 95–119. doi:10.1007/b11152.
  18. ^ Zhao, Yan; Truhlar, Donald G. (2008-05-01). "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals". Theoretical Chemistry Accounts. 120 (1): 215–241. doi:10.1007/s00214-007-0310-x. ISSN 1432-2234.
  19. ^ Dunning, Thom H. (1989-01-15). "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen". The Journal of Chemical Physics. 90 (2): 1007–1023. doi:10.1063/1.456153. ISSN 0021-9606.
  20. ^ a b c Gimferrer, Martí; Danés, Sergi; Andrada, Diego M.; Salvador, Pedro (2021-12-06). "Unveiling the Electronic Structure of the Bi(+1)/Bi(+3) Redox Couple on NCN and NNN Pincer Complexes". Inorganic Chemistry. 60 (23): 17657–17668. doi:10.1021/acs.inorgchem.1c02252. ISSN 0020-1669. PMC 8653152. PMID 34766771.{{cite journal}}: CS1 maint: PMC format (link)
  21. ^ Pyykkö, Pekka (2015-03-19). "Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary". The Journal of Physical Chemistry A. 119 (11): 2326–2337. doi:10.1021/jp5065819. ISSN 1089-5639.
  22. ^ Bader, Richard F. W. (1991-07-01). "A quantum theory of molecular structure and its applications". Chemical Reviews. 91 (5): 893–928. doi:10.1021/cr00005a013. ISSN 0009-2665.
  23. ^ Weinhold, Frank; Landis, Clark R. (2001-05-01). "NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS". Chemistry Education Research and Practice. 2 (2): 91–104. doi:10.1039/B1RP90011K. ISSN 1756-1108.
  24. ^ a b c d Xiao, Wang-Chuan; Tao, Yun-Wen; Luo, Geng-Geng (2020-03-18). "Hydrogen formation using a synthetic heavier main-group bismuth-based electrocatalyst". International Journal of Hydrogen Energy. 45 (15): 8177–8185. doi:10.1016/j.ijhydene.2020.01.152. ISSN 0360-3199. S2CID 213440010.
  25. ^ a b c d e Wang, Feng; Planas, Oriol; Cornella, Josep (2019-03-13). "Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane". Journal of the American Chemical Society. 141 (10): 4235–4240. doi:10.1021/jacs.9b00594. ISSN 0002-7863. PMC 6728098. PMID 30816708.
  26. ^ a b c d Hejda, Martin; Jirásko, Robert; Růžička, Aleš; Jambor, Roman; Dostál, Libor (2020-12-14). "Probing the Limits of Oxidative Addition of C(sp 3 )–X Bonds toward Selected N,C,N -Chelated Bismuth(I) Compounds". Organometallics. 39 (23): 4320–4328. doi:10.1021/acs.organomet.0c00418. ISSN 0276-7333. S2CID 225479032.
  27. ^ a b c Šimon, Petr; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2013-01-14). "Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds". Organometallics. 32 (1): 239–248. doi:10.1021/om3010383. ISSN 0276-7333.
  28. ^ a b c Kořenková, Monika; Kremláček, Vít; Hejda, Martin; Turek, Jan; Khudaverdyan, Raffi; Erben, Milan; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2020-01-22). "Hetero Diels–Alder Reactions of Masked Dienes Containing Heavy Group 15 Elements". Chemistry – A European Journal. 26 (5): 1144–1154. doi:10.1002/chem.201904953. ISSN 0947-6539. PMID 31769071. S2CID 208299504.
  29. ^ a b Balázs, Gábor; Breunig, Hans Joachim; Lork, Enno (2002-06-01). "Synthesis and Characterization of R 2 SbH, R 2 BiH, and R 2 Bi−BiR 2 [R = (Me 3 Si) 2 CH]". Organometallics. 21 (13): 2584–2586. doi:10.1021/om020202z. ISSN 0276-7333.
  30. ^ Chu, Terry; Nikonov, Georgii I. (2018-04-11). "Oxidative Addition and Reductive Elimination at Main-Group Element Centers". Chemical Reviews. 118 (7): 3608–3680. doi:10.1021/acs.chemrev.7b00572. ISSN 0009-2665. PMID 29558125.
  31. ^ Suzuki, Hitomi; Komatsu, Naoki; Ogawa, Takuji; Murafuji, Toshihiro; Ikegami, Tohru; Matano, Yoshihiro (2001-02-22). Organobismuth Chemistry. Elsevier. ISBN 978-0-08-053815-0.
  32. ^ Strîmb, Gabriela; Pöllnitz, Alpár; Raţ, Ciprian I.; Silvestru, Cristian (2015-05-21). "A general route to monoorganopnicogen(III) (M = Sb, Bi) compounds with a pincer (N,C,N) group and oxo ligands". Dalton Transactions. 44 (21): 9927–9942. doi:10.1039/C5DT00603A. ISSN 1477-9234. PMID 25941006.
  33. ^ Matano, Yoshihiro; Nomura, Hazumi; Hisanaga, Teppei; Nakano, Haruyuki; Shiro, Motoo; Imahori, Hiroshi (2004-11-01). "Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides". Organometallics. 23 (23): 5471–5480. doi:10.1021/om0494115. ISSN 0276-7333.

attribution: contains text from CC-BY published article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728098/