Jump to content

Electric bacteria: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m top: AWB cleanup patrol, removed underlinked tag
Electric bacteria list +11 ref
Line 1: Line 1:
{{Orphan|date=August 2020}}
{{Orphan|date=August 2020}}


'''Electric bacteria''' are forms of [[bacteria]] that directly consume and excrete [[electron]]s at different energy potentials without requiring the [[Metabolism|metabolization]] of any [[sugar]]s or other [[nutrient]]s.<ref>{{Cite web|url=https://www.newscientist.com/article/dn25894-meet-the-electric-life-forms-that-live-on-pure-energy/|title=Meet the electric life forms that live on pure energy|last=Brahic|first=Catherine|website=New Scientist|language=en-US|access-date=2019-02-18}}</ref> ''[[Shewanella]]'' and ''[[Geobacter]]'' are two known types of electric bacteria. This form of life appears to be especially adapted to low-[[oxygen]] environments. Most life forms require an oxygen environment in which to release the excess of electrons which are produced in metabolizing sugars. In a low oxygen environment, this pathway for releasing electrons is not available. Instead, electric bacteria "breathe" [[metal]]s instead of oxygen, which effectively results in both an intake of and excretion of [[Electric charge|electrical charges]].<ref>{{Cite web|url=http://www.bbc.com/earth/story/20160613-there-are-microbes-that-eat-and-poo-nothing-but-electricity|title=There are microbes that eat and poo nothing but electricity|last=Fox-Skelly|first=Jasmin|website=www.bbc.com|language=en|access-date=2019-05-02}}</ref>
'''Electric bacteria''' are forms of [[bacteria]] that directly consume and excrete [[electron]]s at different energy potentials without requiring the [[Metabolism|metabolization]] of any [[sugar]]s or other [[nutrient]]s.<ref>{{Cite web|url=https://www.newscientist.com/article/dn25894-meet-the-electric-life-forms-that-live-on-pure-energy/|title=Meet the electric life forms that live on pure energy|last=Brahic|first=Catherine|website=New Scientist|language=en-US|access-date=2019-02-18}}</ref> This form of life appears to be especially adapted to low-[[oxygen]] environments. Most life forms require an oxygen environment in which to release the excess of electrons which are produced in metabolizing sugars. In a low oxygen environment, this pathway for releasing electrons is not available. Instead, electric bacteria "breathe" [[metal]]s instead of oxygen, which effectively results in both an intake of and excretion of [[Electric charge|electrical charges]].<ref>{{Cite web|url=http://www.bbc.com/earth/story/20160613-there-are-microbes-that-eat-and-poo-nothing-but-electricity|title=There are microbes that eat and poo nothing but electricity|last=Fox-Skelly|first=Jasmin|website=www.bbc.com|language=en|access-date=2019-05-02}}</ref>

Some electric bacteria

* ''[[Shewanella]]''<ref>{{Cite journal |last=Gorby |first=Yuri A. |last2=Yanina |first2=Svetlana |last3=McLean |first3=Jeffrey S. |last4=Rosso |first4=Kevin M. |last5=Moyles |first5=Dianne |last6=Dohnalkova |first6=Alice |last7=Beveridge |first7=Terry J. |last8=Chang |first8=In Seop |last9=Kim |first9=Byung Hong |last10=Kim |first10=Kyung Shik |last11=Culley |first11=David E. |last12=Reed |first12=Samantha B. |last13=Romine |first13=Margaret F. |last14=Saffarini |first14=Daad A. |last15=Hill |first15=Eric A. |date=2006-07-25 |title=Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms |url=https://pubmed.ncbi.nlm.nih.gov/16849424/ |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=103 |issue=30 |pages=11358–11363 |doi=10.1073/pnas.0604517103 |issn=0027-8424 |pmc=1544091 |pmid=16849424}}</ref>
* ''[[Geobacter]]<ref>{{Cite journal |last=Yalcin |first=Sibel Ebru |last2=O’Brien |first2=J. Patrick |last3=Gu |first3=Yangqi |last4=Reiss |first4=Krystle |last5=Yi |first5=Sophia M. |last6=Jain |first6=Ruchi |last7=Srikanth |first7=Vishok |last8=Dahl |first8=Peter J. |last9=Huynh |first9=Winston |last10=Vu |first10=Dennis |last11=Acharya |first11=Atanu |last12=Chaudhuri |first12=Subhajyoti |last13=Varga |first13=Tamas |last14=Batista |first14=Victor S. |last15=Malvankar |first15=Nikhil S. |date=2020-10 |title=Electric field stimulates production of highly conductive microbial OmcZ nanowires |url=https://www.nature.com/articles/s41589-020-0623-9 |journal=Nature Chemical Biology |language=en |volume=16 |issue=10 |pages=1136–1142 |doi=10.1038/s41589-020-0623-9 |issn=1552-4469}}</ref>''
* [[Methanobacterium palustre]]<ref>{{Cite journal |last=S |first=Cheng |last2=D |first2=Xing |last3=Df |first3=Call |last4=Be |first4=Logan |date=2009-05-15 |title=Direct biological conversion of electrical current into methane by electromethanogenesis |url=https://pubmed.ncbi.nlm.nih.gov/19544913/ |journal=Environmental science & technology |language=en |volume=43 |issue=10 |doi=10.1021/es803531g |issn=0013-936X |pmid=19544913}}</ref>
* [[Methanococcus maripaludis]]<ref>{{Cite journal |last=Deutzmann |first=Jörg S. |last2=Sahin |first2=Merve |last3=Spormann |first3=Alfred M. |date=2015-04-21 |title=Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis |url=https://pubmed.ncbi.nlm.nih.gov/25900658/ |journal=mBio |volume=6 |issue=2 |pages=e00496–15 |doi=10.1128/mBio.00496-15 |issn=2150-7511 |pmc=4453541 |pmid=25900658}}</ref>
* ''[[Mycobacterium smegmatis]]''<ref>{{Cite journal |last=Grinter |first=Rhys |last2=Kropp |first2=Ashleigh |last3=Venugopal |first3=Hari |last4=Senger |first4=Moritz |last5=Badley |first5=Jack |last6=Cabotaje |first6=Princess R. |last7=Jia |first7=Ruyu |last8=Duan |first8=Zehui |last9=Huang |first9=Ping |last10=Stripp |first10=Sven T. |last11=Barlow |first11=Christopher K. |last12=Belousoff |first12=Matthew |last13=Shafaat |first13=Hannah S. |last14=Cook |first14=Gregory M. |last15=Schittenhelm |first15=Ralf B. |date=March 2023 |title=Structural basis for bacterial energy extraction from atmospheric hydrogen |url=https://www.nature.com/articles/s41586-023-05781-7 |journal=Nature |language=en |volume=615 |issue=7952 |pages=541–547 |doi=10.1038/s41586-023-05781-7 |issn=1476-4687}}</ref><ref>{{Cite web |last=Kropp |first=Ashleigh |last2=Greening |first2=Chris |last3=Grinter |first3=Rhys |title=Electricity from thin air: an enzyme from bacteria can extract energy from hydrogen in the atmosphere |url=http://theconversation.com/electricity-from-thin-air-an-enzyme-from-bacteria-can-extract-energy-from-hydrogen-in-the-atmosphere-200432 |access-date=2023-03-28 |website=The Conversation |language=en}}</ref>
* Modified [[Escherichia coli]]<ref>{{Cite journal |last=Ueki |first=Toshiyuki |last2=Walker |first2=David J. F. |last3=Woodard |first3=Trevor L. |last4=Nevin |first4=Kelly P. |last5=Nonnenmann |first5=Stephen S. |last6=Lovley |first6=Derek R. |date=2020-03-20 |title=An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires |url=https://pubs.acs.org/doi/10.1021/acssynbio.9b00506 |journal=ACS Synthetic Biology |language=en |volume=9 |issue=3 |pages=647–654 |doi=10.1021/acssynbio.9b00506 |issn=2161-5063}}</ref><ref>{{Cite journal |last=Ueki |first=Toshiyuki |last2=Walker |first2=David J. F. |last3=Woodard |first3=Trevor L. |last4=Nevin |first4=Kelly P. |last5=Nonnenmann |first5=Stephen S. |last6=Lovley |first6=Derek R. |date=2019-11-26 |title=An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires |url=https://www.biorxiv.org/content/10.1101/856302v1 |language=en |pages=856302 |doi=10.1101/856302v1}}</ref><ref>{{Cite web |title=Electric bacteria create currents out of thin—and thick—air |url=https://www.science.org/content/article/electric-bacteria-create-currents-out-thin-and-thick-air |access-date=2023-03-28 |website=www.science.org |language=en}}</ref>
* A broad group 30 bacteria varieties<ref>{{Cite journal |last=Rowe |first=Annette R. |last2=Chellamuthu |first2=Prithiviraj |last3=Lam |first3=Bonita |last4=Okamoto |first4=Akihiro |last5=Nealson |first5=Kenneth H. |date=2014 |title=Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism |url=https://pubmed.ncbi.nlm.nih.gov/25642220/ |journal=Frontiers in Microbiology |volume=5 |pages=784 |doi=10.3389/fmicb.2014.00784 |issn=1664-302X |pmc=4294203 |pmid=25642220}}</ref><ref>{{Cite news |last=Singer |first=Emily |date=June 2016 |title=New Life Found That Lives Off Electricity |work=[[Quanta Magazine]] |url=https://www.quantamagazine.org/electron-eating-microbes-found-in-odd-places-20160621/}}</ref>


==References==
==References==

Revision as of 18:50, 28 March 2023

Electric bacteria are forms of bacteria that directly consume and excrete electrons at different energy potentials without requiring the metabolization of any sugars or other nutrients.[1] This form of life appears to be especially adapted to low-oxygen environments. Most life forms require an oxygen environment in which to release the excess of electrons which are produced in metabolizing sugars. In a low oxygen environment, this pathway for releasing electrons is not available. Instead, electric bacteria "breathe" metals instead of oxygen, which effectively results in both an intake of and excretion of electrical charges.[2]

Some electric bacteria

References

  1. ^ Brahic, Catherine. "Meet the electric life forms that live on pure energy". New Scientist. Retrieved 2019-02-18.
  2. ^ Fox-Skelly, Jasmin. "There are microbes that eat and poo nothing but electricity". www.bbc.com. Retrieved 2019-05-02.
  3. ^ Gorby, Yuri A.; Yanina, Svetlana; McLean, Jeffrey S.; Rosso, Kevin M.; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J.; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Hill, Eric A. (2006-07-25). "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms". Proceedings of the National Academy of Sciences of the United States of America. 103 (30): 11358–11363. doi:10.1073/pnas.0604517103. ISSN 0027-8424. PMC 1544091. PMID 16849424.
  4. ^ Yalcin, Sibel Ebru; O’Brien, J. Patrick; Gu, Yangqi; Reiss, Krystle; Yi, Sophia M.; Jain, Ruchi; Srikanth, Vishok; Dahl, Peter J.; Huynh, Winston; Vu, Dennis; Acharya, Atanu; Chaudhuri, Subhajyoti; Varga, Tamas; Batista, Victor S.; Malvankar, Nikhil S. (2020-10). "Electric field stimulates production of highly conductive microbial OmcZ nanowires". Nature Chemical Biology. 16 (10): 1136–1142. doi:10.1038/s41589-020-0623-9. ISSN 1552-4469. {{cite journal}}: Check date values in: |date= (help)
  5. ^ S, Cheng; D, Xing; Df, Call; Be, Logan (2009-05-15). "Direct biological conversion of electrical current into methane by electromethanogenesis". Environmental science & technology. 43 (10). doi:10.1021/es803531g. ISSN 0013-936X. PMID 19544913.
  6. ^ Deutzmann, Jörg S.; Sahin, Merve; Spormann, Alfred M. (2015-04-21). "Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis". mBio. 6 (2): e00496–15. doi:10.1128/mBio.00496-15. ISSN 2150-7511. PMC 4453541. PMID 25900658.
  7. ^ Grinter, Rhys; Kropp, Ashleigh; Venugopal, Hari; Senger, Moritz; Badley, Jack; Cabotaje, Princess R.; Jia, Ruyu; Duan, Zehui; Huang, Ping; Stripp, Sven T.; Barlow, Christopher K.; Belousoff, Matthew; Shafaat, Hannah S.; Cook, Gregory M.; Schittenhelm, Ralf B. (March 2023). "Structural basis for bacterial energy extraction from atmospheric hydrogen". Nature. 615 (7952): 541–547. doi:10.1038/s41586-023-05781-7. ISSN 1476-4687.
  8. ^ Kropp, Ashleigh; Greening, Chris; Grinter, Rhys. "Electricity from thin air: an enzyme from bacteria can extract energy from hydrogen in the atmosphere". The Conversation. Retrieved 2023-03-28.
  9. ^ Ueki, Toshiyuki; Walker, David J. F.; Woodard, Trevor L.; Nevin, Kelly P.; Nonnenmann, Stephen S.; Lovley, Derek R. (2020-03-20). "An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires". ACS Synthetic Biology. 9 (3): 647–654. doi:10.1021/acssynbio.9b00506. ISSN 2161-5063.
  10. ^ Ueki, Toshiyuki; Walker, David J. F.; Woodard, Trevor L.; Nevin, Kelly P.; Nonnenmann, Stephen S.; Lovley, Derek R. (2019-11-26). "An Escherichia coli Chassis for Production of Electrically Conductive Protein Nanowires": 856302. doi:10.1101/856302v1. {{cite journal}}: Cite journal requires |journal= (help)
  11. ^ "Electric bacteria create currents out of thin—and thick—air". www.science.org. Retrieved 2023-03-28.
  12. ^ Rowe, Annette R.; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H. (2014). "Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism". Frontiers in Microbiology. 5: 784. doi:10.3389/fmicb.2014.00784. ISSN 1664-302X. PMC 4294203. PMID 25642220.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Singer, Emily (June 2016). "New Life Found That Lives Off Electricity". Quanta Magazine.