Jump to content

Pyrazole: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Add diagram and text for fungicide intermediate
→‎Occurrence and uses: Add book chapter reference
Line 95: Line 95:
In 1959, the first natural pyrazole, [[1-pyrazolyl-alanine]], was isolated from seeds of [[watermelons]].<ref>{{cite journal |last1=Fowden |last2=Noe |last3=Ridd |last4=White |journal=[[Proc. Chem. Soc.]] |year=1959 |pages=131}}</ref><ref>{{cite journal |volume=184 |issue=4688 |pages=69–70 |last1=Noe |first1=F. F. |last2=Fowden |first2=L. |title=alpha-Amino-beta-(pyrazolyl-N) propionic acid: a new amino-acid from ''Citrullus vulgaris'' (water melon) |journal=[[Nature (journal)|Nature]] |year=1959 |doi=10.1038/184069a0 |bibcode=1959Natur.184...69B |last3=Richmond |first3=P. T. |pmid=13804343 |s2cid=37499048|doi-access=free }}</ref>
In 1959, the first natural pyrazole, [[1-pyrazolyl-alanine]], was isolated from seeds of [[watermelons]].<ref>{{cite journal |last1=Fowden |last2=Noe |last3=Ridd |last4=White |journal=[[Proc. Chem. Soc.]] |year=1959 |pages=131}}</ref><ref>{{cite journal |volume=184 |issue=4688 |pages=69–70 |last1=Noe |first1=F. F. |last2=Fowden |first2=L. |title=alpha-Amino-beta-(pyrazolyl-N) propionic acid: a new amino-acid from ''Citrullus vulgaris'' (water melon) |journal=[[Nature (journal)|Nature]] |year=1959 |doi=10.1038/184069a0 |bibcode=1959Natur.184...69B |last3=Richmond |first3=P. T. |pmid=13804343 |s2cid=37499048|doi-access=free }}</ref>


In medicine, derivatives of pyrazole are widely used, including [[celecoxib]] and similar [[COX-2 inhibitors]], [[zaleplon]], [[betazole]], and [[CDPPB]].<ref name=":0">{{Cite journal |last1=Faria |first1=Jéssica Venância |last2=Vegi |first2=Percilene Fazolin |last3=Miguita |first3=Ana Gabriella Carvalho |last4=dos Santos |first4=Maurício Silva |last5=Boechat |first5=Nubia |last6=Bernardino |first6=Alice Maria Rolim |date=2017-11-01 |title=Recently reported biological activities of pyrazole compounds |journal=Bioorganic & Medicinal Chemistry |volume=25 |issue=21 |pages=5891–5903 |doi=10.1016/j.bmc.2017.09.035 |pmid=28988624 |issn=0968-0896}}</ref>
In medicine, derivatives of pyrazole are widely used,<ref name=Kabi>{{cite book |doi=10.1007/978-981-16-8399-2_7 |chapter=Overview on Biological Activities of Pyrazole Derivatives |title=Nanostructured Biomaterials |series=Materials Horizons: From Nature to Nanomaterials |year=2022 |last1=Kabi |first1=Arup K. |last2=Sravani |first2=Sattu |last3=Gujjarappa |first3=Raghuram |last4=Garg |first4=Aakriti |last5=Vodnala |first5=Nagaraju |last6=Tyagi |first6=Ujjawal |last7=Kaldhi |first7=Dhananjaya |last8=Singh |first8=Virender |last9=Gupta |first9=Sreya |last10=Malakar |first10=Chandi C. |pages=229–306 |isbn=978-981-16-8398-5 |display-authors=3 }}</ref> including [[celecoxib]] and similar [[COX-2 inhibitors]], [[zaleplon]], [[betazole]], and [[CDPPB]].<ref name=":0">{{Cite journal |last1=Faria |first1=Jéssica Venância |last2=Vegi |first2=Percilene Fazolin |last3=Miguita |first3=Ana Gabriella Carvalho |last4=dos Santos |first4=Maurício Silva |last5=Boechat |first5=Nubia |last6=Bernardino |first6=Alice Maria Rolim |date=2017-11-01 |title=Recently reported biological activities of pyrazole compounds |journal=Bioorganic & Medicinal Chemistry |volume=25 |issue=21 |pages=5891–5903 |doi=10.1016/j.bmc.2017.09.035 |pmid=28988624 |issn=0968-0896}}</ref>


The pyrazole ring is found within a variety of pesticides as fungicides, insecticides and herbicides, including [[fenpyroximate]], [[fipronil]], [[tebufenpyrad]] and [[tolfenpyrad]].<ref>[http://www.fao.org/docrep/019/i3518e/i3518e.pdf FAO]</ref> Pyrazole moieties are listed among the highly used ring systems for small molecule drugs by the US FDA<ref>Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J Med Chem 2014, 57, 5845.</ref>
The pyrazole ring is found within a variety of pesticides as fungicides, insecticides and herbicides,<ref name=Kabi/> including [[fenpyroximate]], [[fipronil]], [[tebufenpyrad]] and [[tolfenpyrad]].<ref>[http://www.fao.org/docrep/019/i3518e/i3518e.pdf FAO]</ref> Pyrazole moieties are listed among the highly used ring systems for small molecule drugs by the US FDA<ref>Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J Med Chem 2014, 57, 5845.</ref>
:[[File:Pyrazole SDHI intermediate.svg|100px]]
:[[File:Pyrazole SDHI intermediate.svg|100px]]
[[3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid]] is used in the manufacture of six commercial fungicides which are inhibitors of [[succinate dehydrogenase]].<ref name=Walter>{{cite book |doi=10.1002/9783527693931.ch31 |chapter=Fungicidal Succinate-Dehydrogenase-Inhibiting Carboxamides |title=Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals |year=2016 |last1=Walter |first1=Harald |editor-last1=Lamberth |editor-first1=Clemens |editor-first2=Jürgen |editor-last2= Dinges |publisher=Wiley |pages=405–425 |isbn=9783527339471 }}</ref><ref>{{cite book |doi=10.1002/9783527825158.ch11 |chapter=Current Trends in the Design of Fluorine‐Containing Agrochemicals |title=Organofluorine Chemistry |year=2021 |last1=Jeschke |first1=Peter |pages=363–395 |editor-first1=Kálmán |editor-last1=Szabó |editor-first2=Nicklas |editor-last2=Selander |publisher=Wiley |isbn=9783527347117 |s2cid=234149806 }}</ref>
[[3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid]] is used in the manufacture of six commercial fungicides which are inhibitors of [[succinate dehydrogenase]].<ref name=Walter>{{cite book |doi=10.1002/9783527693931.ch31 |chapter=Fungicidal Succinate-Dehydrogenase-Inhibiting Carboxamides |title=Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals |year=2016 |last1=Walter |first1=Harald |editor-last1=Lamberth |editor-first1=Clemens |editor-first2=Jürgen |editor-last2= Dinges |publisher=Wiley |pages=405–425 |isbn=9783527339471 }}</ref><ref>{{cite book |doi=10.1002/9783527825158.ch11 |chapter=Current Trends in the Design of Fluorine‐Containing Agrochemicals |title=Organofluorine Chemistry |year=2021 |last1=Jeschke |first1=Peter |pages=363–395 |editor-first1=Kálmán |editor-last1=Szabó |editor-first2=Nicklas |editor-last2=Selander |publisher=Wiley |isbn=9783527347117 |s2cid=234149806 }}</ref>

Revision as of 11:13, 31 July 2023

Pyrazole
Full structural formula
Skeletal formula with numbers
Ball-and-stick model
Space-filling model
Names
Preferred IUPAC name
1H-Pyrazole[1]
Systematic IUPAC name
1,2-Diazacyclopenta-2,4-diene
Other names
1,2-Diazole
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.005.471 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C3H4N2/c1-2-4-5-3-1/h1-3H,(H,4,5) checkY
    Key: WTKZEGDFNFYCGP-UHFFFAOYSA-N checkY
  • InChI=1/C3H4N2/c1-2-4-5-3-1/h1-3H,(H,4,5)
    Key: WTKZEGDFNFYCGP-UHFFFAOYAW
  • c1cn[nH]c1
Properties
C3H4N2
Molar mass 68.079 g·mol−1
Melting point 66 to 70 °C (151 to 158 °F; 339 to 343 K)
Boiling point 186 to 188 °C (367 to 370 °F; 459 to 461 K)
Basicity (pKb) 11.5
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Pyrazole is an organic compound of azole group with the formula C3H3N2H. It is a heterocycle characterized by a 5-membered ring of three carbon atoms and two adjacent nitrogen atoms, which are in ortho-substitution. Pyrazole is a weak base, with pKb 11.5 (pKa of the conjugate acid 2.49 at 25 °C).[2] Pyrazoles are also a class of compounds that have the ring C3N2 with adjacent nitrogen atoms.[3] Notable drugs containing a pyrazole ring are celecoxib (celebrex) and the anabolic steroid stanozolol.

Preparation and reactions

Pyrazoles are synthesized by the reaction of α,β-unsaturated aldehydes with hydrazine and subsequent dehydrogenation:[4]

Substituted pyrazoles are prepared by condensation of 1,3-diketones with hydrazine (Knorr-type reactions).[5] For example, acetylacetone and hydrazine gives 3,5-dimethylpyrazole:[6]

CH3C(O)CH2C(O)CH3   +   N2H4   →   (CH3)2C3HN2H   +   2 H2O
Novel pyrazole ligands

History

The term pyrazole was given to this class of compounds by German Chemist Ludwig Knorr in 1883.[7] In a classical method developed by German chemist Hans von Pechmann in 1898, pyrazole was synthesized from acetylene and diazomethane.[8]

Conversion to scorpionates

Pyrazoles react with potassium borohydride to form a class of ligands known as scorpionate. Pyrazole itself reacts with potassium borohydride at high temperatures (~200 °C) to form a tridentate ligand known as Tp ligand:

3,5-Diphenyl-1H-pyrazole

3,5-Diphenyl-1H-pyrazole is produced when (E)-1,3-diphenylprop-2-en-1-one is reacted with hydrazine hydrate in the presence of elemental sulfur[9] or sodium persulfate,[10] or by using a hydrazone in which case an azine is produced as a by-product.[11]

Occurrence and uses

Celecoxib, a pyrazole derivative used as an analgesic

In 1959, the first natural pyrazole, 1-pyrazolyl-alanine, was isolated from seeds of watermelons.[12][13]

In medicine, derivatives of pyrazole are widely used,[14] including celecoxib and similar COX-2 inhibitors, zaleplon, betazole, and CDPPB.[15]

The pyrazole ring is found within a variety of pesticides as fungicides, insecticides and herbicides,[14] including fenpyroximate, fipronil, tebufenpyrad and tolfenpyrad.[16] Pyrazole moieties are listed among the highly used ring systems for small molecule drugs by the US FDA[17]

3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid is used in the manufacture of six commercial fungicides which are inhibitors of succinate dehydrogenase.[18][19]

See also

References

  1. ^ "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 141. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  2. ^ "Dissociation constants of organic acids and bases" (PDF). Archived (PDF) from the original on 12 July 2017.
  3. ^ Eicher, T.; Hauptmann, S. (2003). The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications (2nd ed.). Wiley-VCH. ISBN 3-527-30720-6.
  4. ^ Schmidt, Andreas; Dreger, Andrij (2011). "Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses". Curr. Org. Chem. 15 (9): 1423–1463. doi:10.2174/138527211795378263.
  5. ^ Nozari, M., Addison, A., Reeves, G.T, Zeller, M., Jasinski, J.P., Kaur, M., Gilbert, J. G., Hamilton, C. R., Popovitch, J. M., Wolf, L. M., Crist, L. E., Bastida, N., (2018) Journal of heterocyclic Chemistry 55, 6, 1291-1307. https://doi.org/10.1002/jhet.3155.
  6. ^ Johnson, William S.; Highet, Robert J. (1963). "3,5-Dimethylpyrazole". Organic Syntheses; Collected Volumes, vol. 4, p. 351.
  7. ^ Knorr, L. (1883). "Action of ethyl acetoacetate on phenylhydrazine. I". Chemische Berichte. 16: 2597–2599. doi:10.1002/cber.188301602194.
  8. ^ von Pechmann, Hans (1898). "Pyrazol aus Acetylen und Diazomethan". Berichte der deutschen chemischen Gesellschaft (in German). 31 (3): 2950–2951. doi:10.1002/cber.18980310363.
  9. ^ Outirite, Moha; Lebrini, Mounim; Lagrenée, Michel; Bentiss, Fouad (2008). "New one step synthesis of 3,5-disubstituted pyrazoles under microwave irradiation and classical heating". Journal of Heterocyclic Chemistry. 45 (2): 503–505. doi:10.1002/jhet.5570450231.
  10. ^ Zhang, Ze; Tan, Ya-Jun; Wang, Chun-Shan; Wu, Hao-Hao (2014). "One-pot synthesis of 3,5-diphenyl-1H-pyrazoles from chalcones and hydrazine under mechanochemical ball milling". Heterocycles. 89 (1): 103–112. doi:10.3987/COM-13-12867.
  11. ^ Lasri, Jamal; Ismail, Ali I. (2018). "Metal-free and FeCl3-catalyzed synthesis of azines and 3,5-diphenyl-1H-pyrazole from hydrazones and/or ketones monitored by high resolution ESI+-MS". Indian Journal of Chemistry, Section B. 57B (3): 362–373.
  12. ^ Fowden; Noe; Ridd; White (1959). Proc. Chem. Soc.: 131. {{cite journal}}: Missing or empty |title= (help)
  13. ^ Noe, F. F.; Fowden, L.; Richmond, P. T. (1959). "alpha-Amino-beta-(pyrazolyl-N) propionic acid: a new amino-acid from Citrullus vulgaris (water melon)". Nature. 184 (4688): 69–70. Bibcode:1959Natur.184...69B. doi:10.1038/184069a0. PMID 13804343. S2CID 37499048.
  14. ^ a b Kabi, Arup K.; Sravani, Sattu; Gujjarappa, Raghuram; et al. (2022). "Overview on Biological Activities of Pyrazole Derivatives". Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. pp. 229–306. doi:10.1007/978-981-16-8399-2_7. ISBN 978-981-16-8398-5.
  15. ^ Faria, Jéssica Venância; Vegi, Percilene Fazolin; Miguita, Ana Gabriella Carvalho; dos Santos, Maurício Silva; Boechat, Nubia; Bernardino, Alice Maria Rolim (1 November 2017). "Recently reported biological activities of pyrazole compounds". Bioorganic & Medicinal Chemistry. 25 (21): 5891–5903. doi:10.1016/j.bmc.2017.09.035. ISSN 0968-0896. PMID 28988624.
  16. ^ FAO
  17. ^ Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J Med Chem 2014, 57, 5845.
  18. ^ Walter, Harald (2016). "Fungicidal Succinate-Dehydrogenase-Inhibiting Carboxamides". In Lamberth, Clemens; Dinges, Jürgen (eds.). Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals. Wiley. pp. 405–425. doi:10.1002/9783527693931.ch31. ISBN 9783527339471.
  19. ^ Jeschke, Peter (2021). "Current Trends in the Design of Fluorine‐Containing Agrochemicals". In Szabó, Kálmán; Selander, Nicklas (eds.). Organofluorine Chemistry. Wiley. pp. 363–395. doi:10.1002/9783527825158.ch11. ISBN 9783527347117. S2CID 234149806.

Further reading

A. Schmidt; A. Dreger (2011). "Recent Advances in the Chemistry of Pyrazoles. Part 2. Reactions and N-Heterocyclic Carbenes of Pyrazole". Curr. Org. Chem. 15 (16): 2897–2970. doi:10.2174/138527211796378497.