Quantum speed limit: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
formatting fixes here and there; add section
add reprint of 1945 paper since the original seems hard to find; the journal seems to be the one formed in 1939 by merging the Physikalische Zeitschrift der Sowjetunion with Technical Physics of the U.S.S.R. (per https://www.nature.com/articles/155763a0 )
Line 1: Line 1:
{{short description|Limitation on the minimum time for a quantum system to evolve between two distinguishable states}}
{{short description|Limitation on the minimum time for a quantum system to evolve between two distinguishable states}}
In [[quantum mechanics]], a '''quantum speed limit''' ('''QSL''') is a limitation on the minimum time for a quantum system to evolve between two distinguishable states.<ref>{{cite journal |last1=Deffner |first1=S. |last2=Campbell |first2=S. |title=Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control |journal=[[J. Phys. A: Math. Theor.]] |date=10 October 2017 |volume=50 |issue=45 |pages=453001 |doi=10.1088/1751-8121/aa86c6|arxiv=1705.08023 |s2cid=3477317 }}</ref> QSL are closely related to time-energy uncertainty relations. In 1945, [[Leonid Mandelstam]] and [[Igor Tamm]] derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion.<ref>{{cite journal |last1=Mandelshtam |first1=L. I. |last2=Tamm |first2=I. E. |title=The uncertainty relation between energy and time in nonrelativistic quantum mechanics |journal=[[J. Phys. (USSR)]] |date=1945 |volume=9 |page=249–254}}</ref> Over half a century later, [[Norman Margolus]] and [[Lev Levitin]] showed that the speed of evolution cannot exceed the mean energy,<ref name="Margolus1998">{{cite journal |last1=Margolus |first1=Norman |last2=Levitin |first2=Lev B. |title=The maximum speed of dynamical evolution |journal=[[Physica D: Nonlinear Phenomena]] |date=September 1998 |volume=120 |issue=1–2 |pages=188–195 |doi=10.1016/S0167-2789(98)00054-2 |arxiv=quant-ph/9710043 |s2cid=468290 }}</ref> a result known as the [[Margolus–Levitin theorem]]. Realistic physical systems in contact with an environment are known as [[open quantum system]]s and their evolution is also subject to QSL.<ref>{{cite journal |last1=Taddei |first1=M. M. |last2=Escher |first2=B. M. |last3=Davidovich |first3=L. |last4=de Matos Filho |first4=R. L. |title=Quantum Speed Limit for Physical Processes |journal=[[Physical Review Letters]] |date=30 January 2013 |volume=110 |issue=5 |pages=050402 |doi=10.1103/PhysRevLett.110.050402 |pmid=23414007 |arxiv=1209.0362 |s2cid=38373815 }}</ref><ref>{{cite journal |last1=del Campo |first1=A. |last2=Egusquiza |first2=I. L. |last3=Plenio |first3=M. B. |last4=Huelga |first4=S. F. |title=Quantum Speed Limits in Open System Dynamics |journal=[[Physical Review Letters]] |date=30 January 2013 |volume=110 |issue=5 |pages=050403 |doi=10.1103/PhysRevLett.110.050403 |pmid=23414008 |arxiv=1209.1737 |s2cid=8362503 }}</ref> Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes,<ref>{{cite journal |last1=Deffner |first1=S. |last2=Lutz |first2=E. |title=Quantum speed limit for non-Markovian dynamics |journal=[[Physical Review Letters]] |date=3 July 2013 |volume=111 |issue=1 |pages=010402 |doi=10.1103/PhysRevLett.111.010402|pmid=23862985 |arxiv=1302.5069 |s2cid=36711861 }}</ref> which was verified in a cavity QED experiment.<ref>{{cite journal |last1=Cimmarusti |first1=A. D. |last2=Yan |first2=Z. |last3=Patterson |first3=B. D. |last4=Corcos |first4=L. P. |last5=Orozco |first5= L. A. |last6=Deffner |first6=S. |title=Quantum speed limit for non-Markovian dynamics |journal=[[Physical Review Letters]] |date=11 June 2015 |volume=114 |issue=23 |pages=233602 |doi=10.1103/PhysRevLett.114.233602|pmid=26196802 |arxiv=1503.02591 |s2cid=14904633 }}</ref>
In [[quantum mechanics]], a '''quantum speed limit''' ('''QSL''') is a limitation on the minimum time for a quantum system to evolve between two distinguishable states.<ref>{{cite journal |last1=Deffner |first1=S. |last2=Campbell |first2=S. |title=Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control |journal=[[J. Phys. A: Math. Theor.]] |date=10 October 2017 |volume=50 |issue=45 |pages=453001 |doi=10.1088/1751-8121/aa86c6|arxiv=1705.08023 |s2cid=3477317 }}</ref> QSL are closely related to time-energy uncertainty relations. In 1945, [[Leonid Mandelstam]] and [[Igor Tamm]] derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion.<ref>{{cite journal |last1=Mandelshtam |first1=L. I. |last2=Tamm |first2=I. E. |title=The uncertainty relation between energy and time in nonrelativistic quantum mechanics |journal=[[J. Phys. (USSR)]] |date=1945 |volume=9 |page=249–254}} Reprinted as {{cite book |chapter=The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics |date=1991 |title=Selected Papers |pages=115–123 |editor-last=Bolotovskii |editor-first=Boris M. |url=http://link.springer.com/10.1007/978-3-642-74626-0_8 |access-date=2024-04-06 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-74626-0_8 |isbn=978-3-642-74628-4 |last1=Mandelstam |first1=L. |last2=Tamm |first2=Ig. |editor2-last=Frenkel |editor2-first=Victor Ya. |editor3-last=Peierls |editor3-first=Rudolf |editor-link3=Rudolf Peierls}}</ref> Over half a century later, [[Norman Margolus]] and [[Lev Levitin]] showed that the speed of evolution cannot exceed the mean energy,<ref name="Margolus1998">{{cite journal |last1=Margolus |first1=Norman |last2=Levitin |first2=Lev B. |title=The maximum speed of dynamical evolution |journal=[[Physica D: Nonlinear Phenomena]] |date=September 1998 |volume=120 |issue=1–2 |pages=188–195 |doi=10.1016/S0167-2789(98)00054-2 |arxiv=quant-ph/9710043 |s2cid=468290 }}</ref> a result known as the [[Margolus–Levitin theorem]]. Realistic physical systems in contact with an environment are known as [[open quantum system]]s and their evolution is also subject to QSL.<ref>{{cite journal |last1=Taddei |first1=M. M. |last2=Escher |first2=B. M. |last3=Davidovich |first3=L. |last4=de Matos Filho |first4=R. L. |title=Quantum Speed Limit for Physical Processes |journal=[[Physical Review Letters]] |date=30 January 2013 |volume=110 |issue=5 |pages=050402 |doi=10.1103/PhysRevLett.110.050402 |pmid=23414007 |arxiv=1209.0362 |s2cid=38373815 }}</ref><ref>{{cite journal |last1=del Campo |first1=A. |last2=Egusquiza |first2=I. L. |last3=Plenio |first3=M. B. |last4=Huelga |first4=S. F. |title=Quantum Speed Limits in Open System Dynamics |journal=[[Physical Review Letters]] |date=30 January 2013 |volume=110 |issue=5 |pages=050403 |doi=10.1103/PhysRevLett.110.050403 |pmid=23414008 |arxiv=1209.1737 |s2cid=8362503 }}</ref> Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes,<ref>{{cite journal |last1=Deffner |first1=S. |last2=Lutz |first2=E. |title=Quantum speed limit for non-Markovian dynamics |journal=[[Physical Review Letters]] |date=3 July 2013 |volume=111 |issue=1 |pages=010402 |doi=10.1103/PhysRevLett.111.010402|pmid=23862985 |arxiv=1302.5069 |s2cid=36711861 }}</ref> which was verified in a cavity QED experiment.<ref>{{cite journal |last1=Cimmarusti |first1=A. D. |last2=Yan |first2=Z. |last3=Patterson |first3=B. D. |last4=Corcos |first4=L. P. |last5=Orozco |first5= L. A. |last6=Deffner |first6=S. |title=Quantum speed limit for non-Markovian dynamics |journal=[[Physical Review Letters]] |date=11 June 2015 |volume=114 |issue=23 |pages=233602 |doi=10.1103/PhysRevLett.114.233602|pmid=26196802 |arxiv=1503.02591 |s2cid=14904633 }}</ref>


QSL have been used to explore the [[limits of computation]]<ref>{{cite journal |last1=Lloyd |first1=Seth |title=Ultimate physical limits to computation |journal=Nature |date=31 August 2000 |volume=406 |issue=6799 |pages=1047–1054 |doi=10.1038/35023282 |pmid=10984064 |language=en |issn=1476-4687|arxiv=quant-ph/9908043 |s2cid=75923 }}</ref><ref>{{cite journal |last1=Lloyd |first1=Seth |title=Computational Capacity of the Universe |journal=[[Physical Review Letters]] |date=24 May 2002 |volume=88 |issue=23 |pages=237901 |doi=10.1103/PhysRevLett.88.237901 |pmid=12059399 |arxiv=quant-ph/0110141 |s2cid=6341263 }}</ref> and complexity. In 2017, QSLs were studied in a quantum oscillator at high temperature.<ref>{{cite journal |last1=Deffner |first1=S. |title=Geometric quantum speed limits: a case for Wigner phase space |journal=[[New Journal of Physics]] |date=20 October 2017 |volume=19 |issue=10 |pages=103018 |doi=10.1088/1367-2630/aa83dc|doi-access=free |hdl=11603/19409 |hdl-access=free }}</ref> In 2018, it was shown that QSL are not restricted to the quantum domain and that similar bounds hold in classical systems.<ref>{{cite journal |last1=Shanahan |first1=B. |last2=Chenu |first2=A. |last3=Margolus |first3=N. |last4=del Campo |first4=A. |title=Quantum Speed Limits across the Quantum-to-Classical Transition |journal=[[Physical Review Letters]] |date=12 February 2018 |volume=120 |issue=7 |page=070401 |doi=10.1103/PhysRevLett.120.070401 |pmid=29542956 |doi-access=free |arxiv=1710.07335 }}</ref><ref>{{cite journal |last1=Okuyama |first1=Manaka |last2=Ohzeki |first2=Masayuki |title=Quantum Speed Limit is Not Quantum |journal=[[Physical Review Letters]] |date=12 February 2018 |volume=120 |issue=7 |pages=070402 |doi=10.1103/PhysRevLett.120.070402 |pmid=29542975 |arxiv=1710.03498 |s2cid=4027745 }}</ref> In 2021, both the Mandelstam-Tamm and the Margolus-Levitin QSL bounds were concurrently tested in a single experiment<ref>{{cite journal |last1=Ness |first1=Gal |last2=Lam |first2=Manolo R. |last3=Alt |first3=Wolfgang |last4=Meschede |first4=Dieter |last5=Sagi |first5=Yoav |last6=Alberti |first6=Andrea |title=Observing crossover between quantum speed limits |journal=Science Advances |date=22 December 2021 |volume=7 |issue=52 |pages=eabj9119 |doi=10.1126/sciadv.abj9119 |doi-access=free |pmid=34936463 |pmc=8694601 }}</ref> which indicated there are "two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times."
QSL have been used to explore the [[limits of computation]]<ref>{{cite journal |last1=Lloyd |first1=Seth |title=Ultimate physical limits to computation |journal=Nature |date=31 August 2000 |volume=406 |issue=6799 |pages=1047–1054 |doi=10.1038/35023282 |pmid=10984064 |language=en |issn=1476-4687|arxiv=quant-ph/9908043 |s2cid=75923 }}</ref><ref>{{cite journal |last1=Lloyd |first1=Seth |title=Computational Capacity of the Universe |journal=[[Physical Review Letters]] |date=24 May 2002 |volume=88 |issue=23 |pages=237901 |doi=10.1103/PhysRevLett.88.237901 |pmid=12059399 |arxiv=quant-ph/0110141 |s2cid=6341263 }}</ref> and complexity. In 2017, QSLs were studied in a quantum oscillator at high temperature.<ref>{{cite journal |last1=Deffner |first1=S. |title=Geometric quantum speed limits: a case for Wigner phase space |journal=[[New Journal of Physics]] |date=20 October 2017 |volume=19 |issue=10 |pages=103018 |doi=10.1088/1367-2630/aa83dc|doi-access=free |hdl=11603/19409 |hdl-access=free }}</ref> In 2018, it was shown that QSL are not restricted to the quantum domain and that similar bounds hold in classical systems.<ref>{{cite journal |last1=Shanahan |first1=B. |last2=Chenu |first2=A. |last3=Margolus |first3=N. |last4=del Campo |first4=A. |title=Quantum Speed Limits across the Quantum-to-Classical Transition |journal=[[Physical Review Letters]] |date=12 February 2018 |volume=120 |issue=7 |page=070401 |doi=10.1103/PhysRevLett.120.070401 |pmid=29542956 |doi-access=free |arxiv=1710.07335 }}</ref><ref>{{cite journal |last1=Okuyama |first1=Manaka |last2=Ohzeki |first2=Masayuki |title=Quantum Speed Limit is Not Quantum |journal=[[Physical Review Letters]] |date=12 February 2018 |volume=120 |issue=7 |pages=070402 |doi=10.1103/PhysRevLett.120.070402 |pmid=29542975 |arxiv=1710.03498 |s2cid=4027745 }}</ref> In 2021, both the Mandelstam-Tamm and the Margolus-Levitin QSL bounds were concurrently tested in a single experiment<ref>{{cite journal |last1=Ness |first1=Gal |last2=Lam |first2=Manolo R. |last3=Alt |first3=Wolfgang |last4=Meschede |first4=Dieter |last5=Sagi |first5=Yoav |last6=Alberti |first6=Andrea |title=Observing crossover between quantum speed limits |journal=Science Advances |date=22 December 2021 |volume=7 |issue=52 |pages=eabj9119 |doi=10.1126/sciadv.abj9119 |doi-access=free |pmid=34936463 |pmc=8694601 }}</ref> which indicated there are "two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times."

Revision as of 01:10, 6 April 2024

In quantum mechanics, a quantum speed limit (QSL) is a limitation on the minimum time for a quantum system to evolve between two distinguishable states.[1] QSL are closely related to time-energy uncertainty relations. In 1945, Leonid Mandelstam and Igor Tamm derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion.[2] Over half a century later, Norman Margolus and Lev Levitin showed that the speed of evolution cannot exceed the mean energy,[3] a result known as the Margolus–Levitin theorem. Realistic physical systems in contact with an environment are known as open quantum systems and their evolution is also subject to QSL.[4][5] Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes,[6] which was verified in a cavity QED experiment.[7]

QSL have been used to explore the limits of computation[8][9] and complexity. In 2017, QSLs were studied in a quantum oscillator at high temperature.[10] In 2018, it was shown that QSL are not restricted to the quantum domain and that similar bounds hold in classical systems.[11][12] In 2021, both the Mandelstam-Tamm and the Margolus-Levitin QSL bounds were concurrently tested in a single experiment[13] which indicated there are "two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times."

Margolus–Levitin limit

Margolus and Levitin[3] consider an arbitrary pure state, written as a linear combination of energy eigenstates:

They show that the time required for to evolve into a state orthogonal to is bounded below:
where is the average energy,

Mandelstam–Tamm limit

Let be the Bures metric, defined by

If a quantum system is evolving under a time-dependent Hamiltonian , then its velocity according to Bures metric is upper bounded by
where is the uncertainty in energy at time .

Two corollaries:

  • The time taken to evolve from to is , where is the time-averaged uncertainty in energy.
  • The time taken to evolve from one pure state to another pure state orthogonal to it is . [14]

References

  1. ^ Deffner, S.; Campbell, S. (10 October 2017). "Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control". J. Phys. A: Math. Theor. 50 (45): 453001. arXiv:1705.08023. doi:10.1088/1751-8121/aa86c6. S2CID 3477317.
  2. ^ Mandelshtam, L. I.; Tamm, I. E. (1945). "The uncertainty relation between energy and time in nonrelativistic quantum mechanics". J. Phys. (USSR). 9: 249–254. Reprinted as Mandelstam, L.; Tamm, Ig. (1991). "The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics". In Bolotovskii, Boris M.; Frenkel, Victor Ya.; Peierls, Rudolf (eds.). Selected Papers. Berlin, Heidelberg: Springer. pp. 115–123. doi:10.1007/978-3-642-74626-0_8. ISBN 978-3-642-74628-4. Retrieved 2024-04-06.
  3. ^ a b Margolus, Norman; Levitin, Lev B. (September 1998). "The maximum speed of dynamical evolution". Physica D: Nonlinear Phenomena. 120 (1–2): 188–195. arXiv:quant-ph/9710043. doi:10.1016/S0167-2789(98)00054-2. S2CID 468290.
  4. ^ Taddei, M. M.; Escher, B. M.; Davidovich, L.; de Matos Filho, R. L. (30 January 2013). "Quantum Speed Limit for Physical Processes". Physical Review Letters. 110 (5): 050402. arXiv:1209.0362. doi:10.1103/PhysRevLett.110.050402. PMID 23414007. S2CID 38373815.
  5. ^ del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F. (30 January 2013). "Quantum Speed Limits in Open System Dynamics". Physical Review Letters. 110 (5): 050403. arXiv:1209.1737. doi:10.1103/PhysRevLett.110.050403. PMID 23414008. S2CID 8362503.
  6. ^ Deffner, S.; Lutz, E. (3 July 2013). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters. 111 (1): 010402. arXiv:1302.5069. doi:10.1103/PhysRevLett.111.010402. PMID 23862985. S2CID 36711861.
  7. ^ Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; Corcos, L. P.; Orozco, L. A.; Deffner, S. (11 June 2015). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters. 114 (23): 233602. arXiv:1503.02591. doi:10.1103/PhysRevLett.114.233602. PMID 26196802. S2CID 14904633.
  8. ^ Lloyd, Seth (31 August 2000). "Ultimate physical limits to computation". Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. doi:10.1038/35023282. ISSN 1476-4687. PMID 10984064. S2CID 75923.
  9. ^ Lloyd, Seth (24 May 2002). "Computational Capacity of the Universe". Physical Review Letters. 88 (23): 237901. arXiv:quant-ph/0110141. doi:10.1103/PhysRevLett.88.237901. PMID 12059399. S2CID 6341263.
  10. ^ Deffner, S. (20 October 2017). "Geometric quantum speed limits: a case for Wigner phase space". New Journal of Physics. 19 (10): 103018. doi:10.1088/1367-2630/aa83dc. hdl:11603/19409.
  11. ^ Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A. (12 February 2018). "Quantum Speed Limits across the Quantum-to-Classical Transition". Physical Review Letters. 120 (7): 070401. arXiv:1710.07335. doi:10.1103/PhysRevLett.120.070401. PMID 29542956.
  12. ^ Okuyama, Manaka; Ohzeki, Masayuki (12 February 2018). "Quantum Speed Limit is Not Quantum". Physical Review Letters. 120 (7): 070402. arXiv:1710.03498. doi:10.1103/PhysRevLett.120.070402. PMID 29542975. S2CID 4027745.
  13. ^ Ness, Gal; Lam, Manolo R.; Alt, Wolfgang; Meschede, Dieter; Sagi, Yoav; Alberti, Andrea (22 December 2021). "Observing crossover between quantum speed limits". Science Advances. 7 (52): eabj9119. doi:10.1126/sciadv.abj9119. PMC 8694601. PMID 34936463.
  14. ^ Deffner, Sebastian; Lutz, Eric (2013-08-23). "Energy–time uncertainty relation for driven quantum systems". Journal of Physics A: Mathematical and Theoretical. 46 (33): 335302. arXiv:1104.5104. doi:10.1088/1751-8113/46/33/335302. hdl:11603/19394. ISSN 1751-8113.