Jump to content

Vertical transmission: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Transmission Modes: Section header to sentence case per MOS:HEADINGS
m Added examples of vertical transmission in invertebrate and vertebrate animals and citations.
Line 28: Line 28:
[[Earthworm]]s (Eisenia) have an extracellular symbiont, ''[[Verminephrobacter]]''. Rather than being passed through the egg in the germline, the young are [[Aposymbiosis|aposymbiotic]] when still in the egg capsule; however, they acquire ''Verminephrobacter'' before the egg capsule ruptures, so it is still vertical transmission.<ref>{{Cite journal|last1=Davidson|first1=Seana K.|last2=Stahl|first2=David A.|date=2006-01-01|title=Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida|journal=Applied and Environmental Microbiology|language=en|volume=72|issue=1|pages=769–775|doi=10.1128/AEM.72.1.769-775.2006|issn=0099-2240|pmid=16391117|pmc=1352274|bibcode=2006ApEnM..72..769D}}</ref>
[[Earthworm]]s (Eisenia) have an extracellular symbiont, ''[[Verminephrobacter]]''. Rather than being passed through the egg in the germline, the young are [[Aposymbiosis|aposymbiotic]] when still in the egg capsule; however, they acquire ''Verminephrobacter'' before the egg capsule ruptures, so it is still vertical transmission.<ref>{{Cite journal|last1=Davidson|first1=Seana K.|last2=Stahl|first2=David A.|date=2006-01-01|title=Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida|journal=Applied and Environmental Microbiology|language=en|volume=72|issue=1|pages=769–775|doi=10.1128/AEM.72.1.769-775.2006|issn=0099-2240|pmid=16391117|pmc=1352274|bibcode=2006ApEnM..72..769D}}</ref>


== Well studied archetypes ==
== '''Examples''' ==
'''<big>Invertebrates:</big>'''

Vertical transmission of endosymbiotic bacteria is very common in [[Insect|insects.]] <ref>{{Cite journal |last=Ferrari |first=Julia |last2=Vavre |first2=Fabrice |date=2011-05-12 |title=Bacterial symbionts in insects or the story of communities affecting communities |url=https://royalsocietypublishing.org/doi/10.1098/rstb.2010.0226 |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |language=en |volume=366 |issue=1569 |pages=1389–1400 |doi=10.1098/rstb.2010.0226 |issn=0962-8436 |pmc=PMC3081568 |pmid=21444313}}</ref> It's estimated that about 70% of all insects are caring bacteria Wolbachia, which transmitted vertically.<ref>{{Cite journal |last=Choubdar |first=Nayyereh |last2=Karimian |first2=Fateh |last3=Koosha |first3=Mona |last4=Nejati |first4=Jalil |last5=Shabani Kordshouli |first5=Razieh |last6=Azarm |first6=Amrollah |last7=Oshaghi |first7=Mohammad Ali |date=2023-04-20 |editor-last=Pietri |editor-first=Jose |title=Wolbachia infection in native populations of Blattella germanica and Periplaneta americana |url=https://dx.plos.org/10.1371/journal.pone.0284704 |journal=PLOS ONE |language=en |volume=18 |issue=4 |pages=e0284704 |doi=10.1371/journal.pone.0284704 |issn=1932-6203 |pmc=PMC10118093 |pmid=37079598}}</ref>


=== Pea aphids and ''Buchnera'' ===
=== Pea aphids and ''Buchnera'' ===
[[Acyrthosiphon pisum|Pea Aphids]] do not get all of the necessary amino acids from their diet.  ''[[Buchnera (bacterium)|Buchnera]]'', synthesize the needed ones in an obligate relationship.<ref name=":1" />   
[[Acyrthosiphon pisum|Pea Aphids]] do not get all of the necessary amino acids from their diet.  ''[[Buchnera (bacterium)|Buchnera]]'', synthesize the needed ones in an obligate relationship.<ref name=":1" /> <ref>{{Cite journal |last=Douglas |first=A. E. |date=1998-01 |title=Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera |url=https://www.annualreviews.org/doi/10.1146/annurev.ento.43.1.17 |journal=Annual Review of Entomology |language=en |volume=43 |issue=1 |pages=17–37 |doi=10.1146/annurev.ento.43.1.17 |issn=0066-4170}}</ref>  


=== Head lice and ''Candidatus'' ''Riesia pediculicola'' ===
=== Head lice and ''Candidatus'' ''Riesia pediculicola'' ===
The head louse (''[[Pediculus humanus]])''  has an obligate symbiotic relationship with [[Candidatus Riesia pediculicola|''Candidatus'' Riesia pediculicola]].  The louse provides shelter and protection while bacteria provides essential [[B vitamins]]. ''C. riesia'' lives in the bacteriocyte but move to the ovaries to be transmitted to the next generation.<ref>{{Cite journal|last1=Sasaki-Fukatsu|first1=Kayoko|last2=Koga|first2=Ryuichi|last3=Nikoh|first3=Naruo|last4=Yoshizawa|first4=Kazunori|last5=Kasai|first5=Shinji|last6=Mihara|first6=Minoru|last7=Kobayashi|first7=Mutsuo|last8=Tomita|first8=Takashi|last9=Fukatsu|first9=Takema|date=2006-11-01|title=Symbiotic Bacteria Associated with Stomach Discs of Human Lice|journal=Applied and Environmental Microbiology|language=en|volume=72|issue=11|pages=7349–7352|doi=10.1128/AEM.01429-06|issn=0099-2240|pmid=16950915|pmc=1636134|bibcode=2006ApEnM..72.7349S}}</ref><ref>[https://scitechdaily.com/human-dna-extracted-from-nits-on-ancient-mummies-sheds-light-on-south-american-ancestry/ Human DNA Extracted From Nits on Ancient Mummies Sheds Light on South American Ancestry ]. SciTechDaily, December 28, 2021. Source: University of Reading.</ref>
The head louse (''[[Pediculus humanus]])''  has an obligate symbiotic relationship with [[Candidatus Riesia pediculicola|''Candidatus'' Riesia pediculicola]].  The louse provides shelter and protection while bacteria provides essential [[B vitamins]]. ''C. riesia'' lives in the [[bacteriocyte]] but move to the ovaries to be transmitted to the next generation.<ref>{{Cite journal|last1=Sasaki-Fukatsu|first1=Kayoko|last2=Koga|first2=Ryuichi|last3=Nikoh|first3=Naruo|last4=Yoshizawa|first4=Kazunori|last5=Kasai|first5=Shinji|last6=Mihara|first6=Minoru|last7=Kobayashi|first7=Mutsuo|last8=Tomita|first8=Takashi|last9=Fukatsu|first9=Takema|date=2006-11-01|title=Symbiotic Bacteria Associated with Stomach Discs of Human Lice|journal=Applied and Environmental Microbiology|language=en|volume=72|issue=11|pages=7349–7352|doi=10.1128/AEM.01429-06|issn=0099-2240|pmid=16950915|pmc=1636134|bibcode=2006ApEnM..72.7349S}}</ref><ref>[https://scitechdaily.com/human-dna-extracted-from-nits-on-ancient-mummies-sheds-light-on-south-american-ancestry/ Human DNA Extracted From Nits on Ancient Mummies Sheds Light on South American Ancestry ]. SciTechDaily, December 28, 2021. Source: University of Reading.</ref>

'''[[Tsetse flies]]''' have a fascinating life cycle. Tsetse gives life birth, which is extremely rare among insects. The fly fertilized one egg at the time and for the first 3 larval stages the single offspring developed inside the mother’s uterus feeding on milk substance coming from milk glands in the uterus.<ref>{{Cite journal |last=Benoit |first=Joshua B. |last2=Attardo |first2=Geoffrey M. |last3=Baumann |first3=Aaron A. |last4=Michalkova |first4=Veronika |last5=Aksoy |first5=Serap |date=2015-01-07 |title=Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation |url=https://www.annualreviews.org/doi/10.1146/annurev-ento-010814-020834 |journal=Annual Review of Entomology |language=en |volume=60 |issue=1 |pages=351–371 |doi=10.1146/annurev-ento-010814-020834 |issn=0066-4170 |pmc=PMC4453834 |pmid=25341093}}</ref><ref>{{Cite journal |last=Langley |first=P. A. |date=1977-12 |title=Physiology of tsetse flies (Glossina spp.) (Diptera: Glossinidae): a review |url=https://www.cambridge.org/core/journals/bulletin-of-entomological-research/article/abs/physiology-of-tsetse-flies-glossina-spp-diptera-glossinidae-a-review/21A12EB47CF87E7CF8E17A13131320D8 |journal=Bulletin of Entomological Research |language=en |volume=67 |issue=4 |pages=523–574 |doi=10.1017/S0007485300006933 |issn=1475-2670}}</ref> <ref>{{Cite journal |last=Denlinger |first=David L. |last2=Ma |first2=Wei-Chun |date=1974-06 |title=Dynamics of the pregnancy cycle in the tsetse Glossina morsitans |url=https://linkinghub.elsevier.com/retrieve/pii/0022191074901437 |journal=Journal of Insect Physiology |language=en |volume=20 |issue=6 |pages=1015–1026 |doi=10.1016/0022-1910(74)90143-7}}</ref><ref>{{Cite journal |last=Attardo |first=Geoffrey M |last2=Tam |first2=Nicole |last3=Parkinson |first3=Dula |last4=Mack |first4=Lindsey K |last5=Zahnle |first5=Xavier J |last6=Arguellez |first6=Joceline |last7=Takáč |first7=Peter |last8=Malacrida |first8=Anna R |date=2020-09-23 |title=Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans (Westwood) by Three-Dimensional Analysis |url=https://www.mdpi.com/2075-4450/11/10/651 |journal=Insects |language=en |volume=11 |issue=10 |pages=651 |doi=10.3390/insects11100651 |issn=2075-4450 |pmc=PMC7650751 |pmid=32977418}}</ref> Through the “milk” the youngsters receive parent [[Microbiota|microflora]] including ''Wigglesworthia glossinidia'', the bacteria providing host with vitamins B scarce in the tsetse fly’s blood-only diet.<ref>{{Cite journal |last=Aksoy |first=S. |date=1995-10-01 |title=Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., Taxa Consisting of the Mycetocyte-Associated, Primary Endosymbionts of Tsetse Flies |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-45-4-848 |journal=International Journal of Systematic Bacteriology |language=en |volume=45 |issue=4 |pages=848–851 |doi=10.1099/00207713-45-4-848 |issn=0020-7713}}</ref> <ref>{{Cite journal |last=Weiss |first=Brian L. |last2=Rio |first2=Rita V. M. |last3=Aksoy |first3=Serap |date=2022-09-30 |title=Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other |url=https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.001242 |journal=Microbiology |language=en |volume=168 |issue=9 |doi=10.1099/mic.0.001242 |issn=1350-0872 |pmc=PMC10723186 |pmid=36129743}}</ref>

'''Social spiders ''[[Stegodyphus dumicola]]''''' live in Namibia and Botswana. The majority of females in the colony are virgins but participate in offspring care for reproducing females.<ref>{{Cite journal |last=Junghanns |first=Anja |last2=Holm |first2=Christina |last3=Schou |first3=Mads Fristrup |last4=Sørensen |first4=Anna Boje |last5=Uhl |first5=Gabriele |last6=Bilde |first6=Trine |date=2017-10 |title=Extreme allomaternal care and unequal task participation by unmated females in a cooperatively breeding spider |url=https://linkinghub.elsevier.com/retrieve/pii/S0003347217302555 |journal=Animal Behaviour |language=en |volume=132 |pages=101–107 |doi=10.1016/j.anbehav.2017.08.006}}</ref> Offspring hatch symbiont-free, and bacterial [[Symbiosis|symbionts]] are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster) mothers early in the development.<ref>{{Cite journal |last=Rose |first=Clémence |last2=Lund |first2=Marie B |last3=Søgård |first3=Andrea M |last4=Busck |first4=Mette M |last5=Bechsgaard |first5=Jesper S |last6=Schramm |first6=Andreas |last7=Bilde |first7=Trine |date=2023-12-01 |title=Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders |url=https://academic.oup.com/ismecommun/article/7584908 |journal=ISME Communications |language=en |volume=3 |issue=1 |doi=10.1038/s43705-023-00256-2 |issn=2730-6151 |pmc=PMC10276852 |pmid=37330540}}</ref>

'''<big>Vertebrates:</big>'''

'''[[Caecilian|Caecilians]]''' feed youngsters by mother skin, passing to them the [[Microbiota|microflora]] which colonize youngster’s skin and gut.<ref>{{Cite journal |last=Kouete |first=Marcel T. |last2=Bletz |first2=Molly C. |last3=LaBumbard |first3=Brandon C. |last4=Woodhams |first4=Douglas C. |last5=Blackburn |first5=David C. |date=2023-05-15 |title=Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian |url=https://animalmicrobiome.biomedcentral.com/articles/10.1186/s42523-023-00243-x |journal=Animal Microbiome |language=en |volume=5 |issue=1 |doi=10.1186/s42523-023-00243-x |issn=2524-4671 |pmc=PMC10184399 |pmid=37189209}}</ref> The mother’s skin is adapted for this purpose, it thickens beforehand and  regenerates quickly after being consumed to continue providing for her young. She repeated the process a few times during the early development without significant harm to herself. Repeated nature of skin feeding means that juveniles are exposed to their mother [[microbiome]] several times, enhancing the likelihood of microbial gut and skin successful colonization.

'''Bornean foam‑nesting frogs''' [[Leptomantis harrissoni]] tadpoles receive microbes from both, parents and environment. <ref>{{Cite journal |last=McGrath-Blaser |first=Sarah |last2=Steffen |first2=Morgan |last3=Grafe |first3=T. Ulmar |last4=Torres-Sánchez |first4=María |last5=McLeod |first5=David S. |last6=Muletz-Wolz |first6=Carly R. |date=2021-12-20 |title=Early life skin microbial trajectory as a function of vertical and environmental transmission in Bornean foam-nesting frogs |url=https://animalmicrobiome.biomedcentral.com/articles/10.1186/s42523-021-00147-8 |journal=Animal Microbiome |language=en |volume=3 |issue=1 |doi=10.1186/s42523-021-00147-8 |issn=2524-4671 |pmc=PMC8686334 |pmid=34930504}}</ref> First they have microbiomes resembling their parents and the exterior of the foam nest, but after one week in the pond tadpoles pick up new microbes from the pond environment.

A '''''[[Mimic poison frog|Ranitomeya imitator]]'' dart frog''' feeds tadpoles with unfertilized trophic eggs. Anaerobic [[Parabasalid|parabasalian]] protists are pass to the tadpoles with vertical transmission and when in the gut express digestive enzymes Proteinases.<ref name=":2">{{Cite journal |last=Weinfurther |first=K. D. |last2=Stuckert |first2=A. M. M. |last3=Muscarella |first3=M. E. |last4=Peralta |first4=A. L. |last5=Summers |first5=K. |date=2023-06 |title=Evidence for a Parabasalian Gut Symbiote in Egg-Feeding Poison Frog Tadpoles in Peru |url=https://link.springer.com/10.1007/s11692-023-09602-7 |journal=Evolutionary Biology |language=en |volume=50 |issue=2 |pages=239–248 |doi=10.1007/s11692-023-09602-7 |issn=0071-3260}}</ref> By doing so, they help youngsters to have the ability to digest fat and protein in the mother egg versus plant debris in the mini pond they live in. Genes that code for Proteinases are not present in the Ranitomeya genome. The symbiosis allows Ranitpomeya to expand into the new ecological niche and tadpoles to grow big and strong. <ref name=":2" />

Plus to the symbionts from mother ''Ranitomeya imitator'' tadpoles have an opportunity to recessive the microflora from the father when the dad carries a tadpole on its back from the egg to a breeding pool.<ref>{{Cite book |url=https://www.worldcat.org/title/854749429 |title=Sexual selection: perspectives and models from the Neotropics |date=2014 |publisher=Elsevier, AP |isbn=978-0-12-416028-6 |editor-last=Macedo |editor-first=Regina H. |location=Amsterdam ; Boston |oclc=854749429 |editor-last2=Machado |editor-first2=Glauco}}</ref>


==References==
==References==

Revision as of 20:00, 2 May 2024

Vertical transmission of symbionts is the transfer of a microbial symbiont from the parent directly to the offspring.[1]  Many metazoan species carry symbiotic bacteria which play a mutualistic, commensal, or parasitic role.[1]  A symbiont is acquired by a host via horizontal, vertical, or mixed transmission.[2]

Implications

Complex interdependence occurs between host and symbiont.[3] The genetic pool of the symbiont is generally smaller and more subject to genetic drift.[4] In true vertical transmission, the evolutionary outcomes of the host and symbiont are linked.[5] If there is mixed transmission, new genetic material may be introduced.[6] Generally, symbionts settle into specific niches and can even transfer part of their genome into the host nucleus.[7]

Evolutionary consequences

Benefits

The mechanism promotes tightly coupled evolutionary pressure, which causes the host and symbiont to function as a holobiont.[8]

Disadvantages

Evolutionary bottlenecks lead to less symbiont diversity, and thus resilience.  Similarly, this greatly reduces the effective population size. Ultimately, without an influx of new genetic material, the population becomes clonalMutations tend to persist in symbionts and build up over time.[9]

Transmission modes

Matrilineal

Germline

Since the egg contributes the organelles and has more space and opportunity for intracellular symbionts to be passed to subsequent generations, it is a very common method of vertical transmission.[1]  Intracellular symbionts can migrate from the bacteriocyte to the ovaries and become incorporated in germ cells.[10]

Live birth

Human infants acquire their microbiome from their mothers, from every sphere where there is contact.  This includes potentially the mother's vagina, gastrointestinal tract, skin, mouth and breastmilk.[11] These routes are typical if the delivery is a vaginal birth and the infant is nursed. When other actions, such as Caesarian delivery, bottle feeding, or maternal antibiotics during nursing occur, these modes of vertical transmission are disrupted.[12][13]

Patrilineal

Though extremely rare, Rickettsia is transmitted to Nephotettix cincticep through the paternal line in the sperm.[14]

Aposymbiotic

Earthworms (Eisenia) have an extracellular symbiont, Verminephrobacter. Rather than being passed through the egg in the germline, the young are aposymbiotic when still in the egg capsule; however, they acquire Verminephrobacter before the egg capsule ruptures, so it is still vertical transmission.[15]

Examples

Invertebrates:

Vertical transmission of endosymbiotic bacteria is very common in insects. [16] It's estimated that about 70% of all insects are caring bacteria Wolbachia, which transmitted vertically.[17]

Pea aphids and Buchnera

Pea Aphids do not get all of the necessary amino acids from their diet.  Buchnera, synthesize the needed ones in an obligate relationship.[10] [18]  

Head lice and Candidatus Riesia pediculicola

The head louse (Pediculus humanus)  has an obligate symbiotic relationship with Candidatus Riesia pediculicola.  The louse provides shelter and protection while bacteria provides essential B vitamins. C. riesia lives in the bacteriocyte but move to the ovaries to be transmitted to the next generation.[19][20]

Tsetse flies have a fascinating life cycle. Tsetse gives life birth, which is extremely rare among insects. The fly fertilized one egg at the time and for the first 3 larval stages the single offspring developed inside the mother’s uterus feeding on milk substance coming from milk glands in the uterus.[21][22] [23][24] Through the “milk” the youngsters receive parent microflora including Wigglesworthia glossinidia, the bacteria providing host with vitamins B scarce in the tsetse fly’s blood-only diet.[25] [26]

Social spiders Stegodyphus dumicola live in Namibia and Botswana. The majority of females in the colony are virgins but participate in offspring care for reproducing females.[27] Offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster) mothers early in the development.[28]

Vertebrates:

Caecilians feed youngsters by mother skin, passing to them the microflora which colonize youngster’s skin and gut.[29] The mother’s skin is adapted for this purpose, it thickens beforehand and  regenerates quickly after being consumed to continue providing for her young. She repeated the process a few times during the early development without significant harm to herself. Repeated nature of skin feeding means that juveniles are exposed to their mother microbiome several times, enhancing the likelihood of microbial gut and skin successful colonization.

Bornean foam‑nesting frogs Leptomantis harrissoni tadpoles receive microbes from both, parents and environment. [30] First they have microbiomes resembling their parents and the exterior of the foam nest, but after one week in the pond tadpoles pick up new microbes from the pond environment.

A Ranitomeya imitator dart frog feeds tadpoles with unfertilized trophic eggs. Anaerobic parabasalian protists are pass to the tadpoles with vertical transmission and when in the gut express digestive enzymes Proteinases.[31] By doing so, they help youngsters to have the ability to digest fat and protein in the mother egg versus plant debris in the mini pond they live in. Genes that code for Proteinases are not present in the Ranitomeya genome. The symbiosis allows Ranitpomeya to expand into the new ecological niche and tadpoles to grow big and strong. [31]

Plus to the symbionts from mother Ranitomeya imitator tadpoles have an opportunity to recessive the microflora from the father when the dad carries a tadpole on its back from the egg to a breeding pool.[32]

References

  1. ^ a b c Bright, Monika; Bulgheresi, Silvia (March 2010). "A complex journey: transmission of microbial symbionts". Nature Reviews Microbiology. 8 (3): 218–230. doi:10.1038/nrmicro2262. ISSN 1740-1534. PMC 2967712. PMID 20157340.
  2. ^ Koga, Ryuichi; Bennett, Gordon M.; Cryan, Jason R.; Moran, Nancy A. (2013). "Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage". Environmental Microbiology. 15 (7): 2073–2081. Bibcode:2013EnvMi..15.2073K. doi:10.1111/1462-2920.12121. ISSN 1462-2920. PMID 23574391.
  3. ^ Perotti, M. Alejandra; Clarke, Heather K.; Turner, Bryan D.; Braig, Henk R. (2006-09-28). "Rickettsia as obligate and mycetomic bacteria". The FASEB Journal. 20 (13): 2372–2374. doi:10.1096/fj.06-5870fje. ISSN 0892-6638. PMID 17012243. S2CID 30841294.
  4. ^ Wernegreen, J. J.; Moran, N. A. (1999-01-01). "Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes". Molecular Biology and Evolution. 16 (1): 83–97. doi:10.1093/oxfordjournals.molbev.a026040. ISSN 0737-4038. PMID 10331254.
  5. ^ Vautrin, Emilie; Vavre, Fabrice (2009-03-01). "Interactions between vertically transmitted symbionts: cooperation or conflict?". Trends in Microbiology. 17 (3): 95–99. doi:10.1016/j.tim.2008.12.002. ISSN 0966-842X. PMID 19230673.
  6. ^ Quigley, Kate M.; Warner, Patricia A.; Bay, Line K.; Willis, Bette L. (December 2018). "Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral". Heredity. 121 (6): 524–536. doi:10.1038/s41437-018-0059-0. ISSN 1365-2540. PMC 6221883. PMID 29453423.
  7. ^ Kleine, Tatjana; Maier, Uwe G.; Leister, Dario (2009). "DNA Transfer from Organelles to the Nucleus: The Idiosyncratic Genetics of Endosymbiosis". Annual Review of Plant Biology. 60 (1): 115–138. doi:10.1146/annurev.arplant.043008.092119. PMID 19014347. S2CID 8292855.
  8. ^ Morris, J. Jeffrey (2018-10-19). "What is the hologenome concept of evolution?". F1000Research. 7: 1664. doi:10.12688/f1000research.14385.1. ISSN 2046-1402. PMC 6198262. PMID 30410727.
  9. ^ Smith, Noel H.; Gordon, Stephen V.; de la Rua-Domenech, Ricardo; Clifton-Hadley, Richard S.; Hewinson, R. Glyn (September 2006). "Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis". Nature Reviews Microbiology. 4 (9): 670–681. doi:10.1038/nrmicro1472. ISSN 1740-1534. PMID 16912712. S2CID 2015074.
  10. ^ a b Simonet, Pierre; Gaget, Karen; Balmand, Séverine; Ribeiro Lopes, Mélanie; Parisot, Nicolas; Buhler, Kurt; Duport, Gabrielle; Vulsteke, Veerle; Febvay, Gérard; Heddi, Abdelaziz; Charles, Hubert (2018-02-20). "Bacteriocyte cell death in the pea aphid/ Buchnera symbiotic system". Proceedings of the National Academy of Sciences. 115 (8): E1819–E1828. Bibcode:2018PNAS..115E1819S. doi:10.1073/pnas.1720237115. ISSN 0027-8424. PMC 5828623. PMID 29432146.
  11. ^ Bäckhed, Fredrik; Roswall, Josefine; Peng, Yangqing; Feng, Qiang; Jia, Huijue; Kovatcheva-Datchary, Petia; Li, Yin; Xia, Yan; Xie, Hailiang; Zhong, Huanzi; Khan, Muhammad Tanweer (May 2015). "Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life". Cell Host & Microbe. 17 (5): 690–703. doi:10.1016/j.chom.2015.04.004. PMID 25974306.
  12. ^ Cox, Laura M.; Yamanishi, Shingo; Sohn, Jiho; Alekseyenko, Alexander V.; Leung, Jacqueline M.; Cho, Ilseung; Kim, Sungheon G.; Li, Huilin; Gao, Zhan; Mahana, Douglas; Zárate Rodriguez, Jorge G. (August 2014). "Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences". Cell. 158 (4): 705–721. doi:10.1016/j.cell.2014.05.052. PMC 4134513. PMID 25126780.
  13. ^ Dominguez-Bello, Maria G.; Costello, Elizabeth K.; Contreras, Monica; Magris, Magda; Hidalgo, Glida; Fierer, Noah; Knight, Rob (2010-06-29). "Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns". Proceedings of the National Academy of Sciences of the United States of America. 107 (26): 11971–11975. Bibcode:2010PNAS..10711971D. doi:10.1073/pnas.1002601107. ISSN 1091-6490. PMC 2900693. PMID 20566857.
  14. ^ Watanabe, K.; Yukuhiro, F.; Matsuura, Y.; Fukatsu, T.; Noda, H. (2014-05-20). "Intrasperm vertical symbiont transmission". Proceedings of the National Academy of Sciences. 111 (20): 7433–7437. Bibcode:2014PNAS..111.7433W. doi:10.1073/pnas.1402476111. ISSN 0027-8424. PMC 4034255. PMID 24799707.
  15. ^ Davidson, Seana K.; Stahl, David A. (2006-01-01). "Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida". Applied and Environmental Microbiology. 72 (1): 769–775. Bibcode:2006ApEnM..72..769D. doi:10.1128/AEM.72.1.769-775.2006. ISSN 0099-2240. PMC 1352274. PMID 16391117.
  16. ^ Ferrari, Julia; Vavre, Fabrice (2011-05-12). "Bacterial symbionts in insects or the story of communities affecting communities". Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1569): 1389–1400. doi:10.1098/rstb.2010.0226. ISSN 0962-8436. PMC 3081568. PMID 21444313.{{cite journal}}: CS1 maint: PMC format (link)
  17. ^ Choubdar, Nayyereh; Karimian, Fateh; Koosha, Mona; Nejati, Jalil; Shabani Kordshouli, Razieh; Azarm, Amrollah; Oshaghi, Mohammad Ali (2023-04-20). Pietri, Jose (ed.). "Wolbachia infection in native populations of Blattella germanica and Periplaneta americana". PLOS ONE. 18 (4): e0284704. doi:10.1371/journal.pone.0284704. ISSN 1932-6203. PMC 10118093. PMID 37079598.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  18. ^ Douglas, A. E. (1998-01). "Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera". Annual Review of Entomology. 43 (1): 17–37. doi:10.1146/annurev.ento.43.1.17. ISSN 0066-4170. {{cite journal}}: Check date values in: |date= (help)
  19. ^ Sasaki-Fukatsu, Kayoko; Koga, Ryuichi; Nikoh, Naruo; Yoshizawa, Kazunori; Kasai, Shinji; Mihara, Minoru; Kobayashi, Mutsuo; Tomita, Takashi; Fukatsu, Takema (2006-11-01). "Symbiotic Bacteria Associated with Stomach Discs of Human Lice". Applied and Environmental Microbiology. 72 (11): 7349–7352. Bibcode:2006ApEnM..72.7349S. doi:10.1128/AEM.01429-06. ISSN 0099-2240. PMC 1636134. PMID 16950915.
  20. ^ Human DNA Extracted From Nits on Ancient Mummies Sheds Light on South American Ancestry . SciTechDaily, December 28, 2021. Source: University of Reading.
  21. ^ Benoit, Joshua B.; Attardo, Geoffrey M.; Baumann, Aaron A.; Michalkova, Veronika; Aksoy, Serap (2015-01-07). "Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation". Annual Review of Entomology. 60 (1): 351–371. doi:10.1146/annurev-ento-010814-020834. ISSN 0066-4170. PMC 4453834. PMID 25341093.{{cite journal}}: CS1 maint: PMC format (link)
  22. ^ Langley, P. A. (1977-12). "Physiology of tsetse flies (Glossina spp.) (Diptera: Glossinidae): a review". Bulletin of Entomological Research. 67 (4): 523–574. doi:10.1017/S0007485300006933. ISSN 1475-2670. {{cite journal}}: Check date values in: |date= (help)
  23. ^ Denlinger, David L.; Ma, Wei-Chun (1974-06). "Dynamics of the pregnancy cycle in the tsetse Glossina morsitans". Journal of Insect Physiology. 20 (6): 1015–1026. doi:10.1016/0022-1910(74)90143-7. {{cite journal}}: Check date values in: |date= (help)
  24. ^ Attardo, Geoffrey M; Tam, Nicole; Parkinson, Dula; Mack, Lindsey K; Zahnle, Xavier J; Arguellez, Joceline; Takáč, Peter; Malacrida, Anna R (2020-09-23). "Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans (Westwood) by Three-Dimensional Analysis". Insects. 11 (10): 651. doi:10.3390/insects11100651. ISSN 2075-4450. PMC 7650751. PMID 32977418.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  25. ^ Aksoy, S. (1995-10-01). "Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., Taxa Consisting of the Mycetocyte-Associated, Primary Endosymbionts of Tsetse Flies". International Journal of Systematic Bacteriology. 45 (4): 848–851. doi:10.1099/00207713-45-4-848. ISSN 0020-7713.
  26. ^ Weiss, Brian L.; Rio, Rita V. M.; Aksoy, Serap (2022-09-30). "Microbe Profile: Wigglesworthia glossinidia: the tsetse fly's significant other". Microbiology. 168 (9). doi:10.1099/mic.0.001242. ISSN 1350-0872. PMC 10723186. PMID 36129743.{{cite journal}}: CS1 maint: PMC format (link)
  27. ^ Junghanns, Anja; Holm, Christina; Schou, Mads Fristrup; Sørensen, Anna Boje; Uhl, Gabriele; Bilde, Trine (2017-10). "Extreme allomaternal care and unequal task participation by unmated females in a cooperatively breeding spider". Animal Behaviour. 132: 101–107. doi:10.1016/j.anbehav.2017.08.006. {{cite journal}}: Check date values in: |date= (help)
  28. ^ Rose, Clémence; Lund, Marie B; Søgård, Andrea M; Busck, Mette M; Bechsgaard, Jesper S; Schramm, Andreas; Bilde, Trine (2023-12-01). "Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders". ISME Communications. 3 (1). doi:10.1038/s43705-023-00256-2. ISSN 2730-6151. PMC 10276852. PMID 37330540.{{cite journal}}: CS1 maint: PMC format (link)
  29. ^ Kouete, Marcel T.; Bletz, Molly C.; LaBumbard, Brandon C.; Woodhams, Douglas C.; Blackburn, David C. (2023-05-15). "Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian". Animal Microbiome. 5 (1). doi:10.1186/s42523-023-00243-x. ISSN 2524-4671. PMC 10184399. PMID 37189209.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  30. ^ McGrath-Blaser, Sarah; Steffen, Morgan; Grafe, T. Ulmar; Torres-Sánchez, María; McLeod, David S.; Muletz-Wolz, Carly R. (2021-12-20). "Early life skin microbial trajectory as a function of vertical and environmental transmission in Bornean foam-nesting frogs". Animal Microbiome. 3 (1). doi:10.1186/s42523-021-00147-8. ISSN 2524-4671. PMC 8686334. PMID 34930504.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  31. ^ a b Weinfurther, K. D.; Stuckert, A. M. M.; Muscarella, M. E.; Peralta, A. L.; Summers, K. (2023-06). "Evidence for a Parabasalian Gut Symbiote in Egg-Feeding Poison Frog Tadpoles in Peru". Evolutionary Biology. 50 (2): 239–248. doi:10.1007/s11692-023-09602-7. ISSN 0071-3260. {{cite journal}}: Check date values in: |date= (help)
  32. ^ Macedo, Regina H.; Machado, Glauco, eds. (2014). Sexual selection: perspectives and models from the Neotropics. Amsterdam ; Boston: Elsevier, AP. ISBN 978-0-12-416028-6. OCLC 854749429.