Jump to content

Liposome extruder: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit
Flagging sources with dois highlighted by RetractionWatch.
 
Line 8: Line 8:
A [[liposome]] is made up of [[phospholipid bilayers]], with the liposome being a spherical vesicle. Phospholipid bilayers have both [[hydrophobic]] and [[hydrophilic]] properties, which are important characteristics of [[cell membrane]]s.<ref>{{Cite journal |last1=Akbarzadeh |first1=Abolfazl |last2=Rezaei-Sadabady |first2=Rogaie |last3=Davaran |first3=Soodabeh |last4=Joo |first4=Sang Woo |last5=Zarghami |first5=Nosratollah |last6=Hanifehpour |first6=Younes |last7=Samiei |first7=Mohammad |last8=Kouhi |first8=Mohammad |last9=Nejati-Koshki |first9=Kazem |date=2013-02-22 |title=Liposome: classification, preparation, and applications |journal=Nanoscale Research Letters |volume=8 |issue=1 |pages=102 |doi=10.1186/1556-276X-8-102 |issn=1556-276X |pmc=3599573 |pmid=23432972|bibcode=2013NRL.....8..102A |doi-access=free }}</ref> The hydrophobic ends of phospholipid molecules are constrained{{clarify|date=January 2023}}, often to each other, creating spherical liposomes that are smaller when the hydrophobic ends are exposed to a solution that is aqueous in nature. The preparation of liposomes results in the formation of the liposome extruder{{clarify|date=January 2023}}.<!--How do liposomes form the extruder?--> A liposome extruder is characterized by the uniform, narrow size distribution of its output, and has a particle-size control mechanism that is highly precise. Complex, toxic, injectable products such as the [[antifungal]] liposomal [[Amphotericin B]], or the liposomal [[cytotoxic]] [[anticancer agent]]s [[doxorubicin]], [[paclitaxel]], [[irinotecan]], [[Adriamycin]], and [[cytarabine]] contain liposomes which are prepared using the liposome extruder.<ref>{{Cite journal |last1=Nayar |first1=Rajiv |last2=Hope |first2=Michael J. |last3=Cullis |first3=Pieter R. |date=1989-11-27 |title=Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique |url=https://dx.doi.org/10.1016/0005-2736%2889%2990468-9 |journal=Biochimica et Biophysica Acta (BBA) - Biomembranes |language=en |volume=986 |issue=2 |pages=200–206 |doi=10.1016/0005-2736(89)90468-9 |issn=0005-2736}}</ref>
A [[liposome]] is made up of [[phospholipid bilayers]], with the liposome being a spherical vesicle. Phospholipid bilayers have both [[hydrophobic]] and [[hydrophilic]] properties, which are important characteristics of [[cell membrane]]s.<ref>{{Cite journal |last1=Akbarzadeh |first1=Abolfazl |last2=Rezaei-Sadabady |first2=Rogaie |last3=Davaran |first3=Soodabeh |last4=Joo |first4=Sang Woo |last5=Zarghami |first5=Nosratollah |last6=Hanifehpour |first6=Younes |last7=Samiei |first7=Mohammad |last8=Kouhi |first8=Mohammad |last9=Nejati-Koshki |first9=Kazem |date=2013-02-22 |title=Liposome: classification, preparation, and applications |journal=Nanoscale Research Letters |volume=8 |issue=1 |pages=102 |doi=10.1186/1556-276X-8-102 |issn=1556-276X |pmc=3599573 |pmid=23432972|bibcode=2013NRL.....8..102A |doi-access=free }}</ref> The hydrophobic ends of phospholipid molecules are constrained{{clarify|date=January 2023}}, often to each other, creating spherical liposomes that are smaller when the hydrophobic ends are exposed to a solution that is aqueous in nature. The preparation of liposomes results in the formation of the liposome extruder{{clarify|date=January 2023}}.<!--How do liposomes form the extruder?--> A liposome extruder is characterized by the uniform, narrow size distribution of its output, and has a particle-size control mechanism that is highly precise. Complex, toxic, injectable products such as the [[antifungal]] liposomal [[Amphotericin B]], or the liposomal [[cytotoxic]] [[anticancer agent]]s [[doxorubicin]], [[paclitaxel]], [[irinotecan]], [[Adriamycin]], and [[cytarabine]] contain liposomes which are prepared using the liposome extruder.<ref>{{Cite journal |last1=Nayar |first1=Rajiv |last2=Hope |first2=Michael J. |last3=Cullis |first3=Pieter R. |date=1989-11-27 |title=Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique |url=https://dx.doi.org/10.1016/0005-2736%2889%2990468-9 |journal=Biochimica et Biophysica Acta (BBA) - Biomembranes |language=en |volume=986 |issue=2 |pages=200–206 |doi=10.1016/0005-2736(89)90468-9 |issn=0005-2736}}</ref>
The technology for extruding liposomes relies on the performance and structural characteristics of the [[lipid bilayer]]s in the liposomal [[phospholipid]]s.{{how|date=April 2023}}{{clarify|date=January 2023}}<ref>{{Cite journal |last1=Nakhaei |first1=Pooria |last2=Margiana |first2=Ria |last3=Bokov |first3=Dmitry O. |last4=Abdelbasset |first4=Walid Kamal |last5=Jadidi Kouhbanani |first5=Mohammad Amin |last6=Varma |first6=Rajender S. |last7=Marofi |first7=Faroogh |last8=Jarahian |first8=Mostafa |last9=Beheshtkhoo |first9=Nasrin |date=2021-09-09 |title=Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol |journal=Frontiers in Bioengineering and Biotechnology |volume=9 |pages=705886 |doi=10.3389/fbioe.2021.705886 |issn=2296-4185 |pmc=8459376 |pmid=34568298 |doi-access=free }}</ref> An external extrusion force pushes the vesicles of liposomes that are large through the polycarbonate membranes with pore sizes that are specific when the [[transition temperature]] of the phospholipids rises slightly due to the change in operating temperature{{explain|date=January 2023}}. Re-[[polymerization]] of the multiple compartments pr liposomes that are large in particle size occurs,<ref>{{Cite journal |date=2019-07-20 |title=Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology |journal=International Journal of Pharmaceutics |language=en |volume=566 |pages=680–686 |doi=10.1016/j.ijpharm.2019.06.013 |issn=0378-5173|last1=Singh |first1=Pushpendra |last2=Bodycomb |first2=Jeffrey |last3=Travers |first3=Bill |last4=Tatarkiewicz |first4=Kuba |last5=Travers |first5=Sean |last6=Matyas |first6=Gary R. |last7=Beck |first7=Zoltan |pmid=31176851 |s2cid=182950021 |doi-access=free }}</ref><ref>{{Cite book |url=https://www.taylorfrancis.com/books/mono/10.1201/9781420026054/water-insoluble-drug-formulation-ron-liu |title=Water-Insoluble Drug Formulation |date=2000-09-30 |publisher=CRC Press |isbn=978-0-429-13278-0 |language=en |doi=10.1201/9781420026054|editor-last1=Liu |editor-first1=Ron }}</ref> and smaller liposomes are created due to the rupturing of the membrane{{which|date=January 2023}} pores. Extrusion of liposomes occurs at a uniform size, based on the pore size in the [[polycarbonate]] [[membrane]].<ref name=":2">{{Cite journal |title=Google Scholar |url=https://scholar.google.com/scholar_lookup?journal=Langmuir&title=Studies+of+vesicle+extrusion&author=B.J.+Frisken&author=C.+Asman&author=P.J.+Patty&volume=16&publication_year=2000&pages=928-933&doi=10.1021/la9905113& |access-date=2022-12-28 |website=scholar.google.com |doi=10.1021/la9905113}}</ref> This happens when the big vesicles are passed through the [[cell membrane]] with a nanopore size specified in size several times<ref name=":2" /> due to the extrusion of polycarbonate membranes having uniform and vertical nanopore distribution on the surface of the membrane.<ref>{{Cite web |title=Why you should chose<!--sic--> extrusion for your liposomal enhancement – Biopharma Group – biopharma.co.uk |url=https://biopharma.co.uk/blog/2016/11/16/why-you-should-chose-extrusion-for-your-liposomal-enhancement/ |access-date=2022-12-28 |language=en-GB}}</ref><ref>{{Cite journal |last1=Olson |first1=F. |last2=Hunt |first2=C. A. |last3=Szoka |first3=F. C. |last4=Vail |first4=W. J. |last5=Papahadjopoulos |first5=D. |date=1979-10-19 |title=Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes |url=https://dx.doi.org/10.1016/0005-2736%2879%2990085-3 |journal=Biochimica et Biophysica Acta (BBA) - Biomembranes |language=en |volume=557 |issue=1 |pages=9–23 |doi=10.1016/0005-2736(79)90085-3 |pmid=95096 |issn=0005-2736}}</ref>
The technology for extruding liposomes relies on the performance and structural characteristics of the [[lipid bilayer]]s in the liposomal [[phospholipid]]s.{{how|date=April 2023}}{{clarify|date=January 2023}}<ref>{{Cite journal |last1=Nakhaei |first1=Pooria |last2=Margiana |first2=Ria |last3=Bokov |first3=Dmitry O. |last4=Abdelbasset |first4=Walid Kamal |last5=Jadidi Kouhbanani |first5=Mohammad Amin |last6=Varma |first6=Rajender S. |last7=Marofi |first7=Faroogh |last8=Jarahian |first8=Mostafa |last9=Beheshtkhoo |first9=Nasrin |date=2021-09-09 |title=Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol |journal=Frontiers in Bioengineering and Biotechnology |volume=9 |pages=705886 |doi=10.3389/fbioe.2021.705886 |issn=2296-4185 |pmc=8459376 |pmid=34568298 |doi-access=free }}{{Retracted|doi=10.3389/fbioe.2023.1285118|pmid=37731758|https://retractionwatch.com/2023/09/08/frontiers-retracts-nearly-40-papers-linked-to-authorship-for-sale/ ''Retraction Watch''|https://retractionwatch.com/2023/10/25/cancer-researcher-with-nine-retractions-says-hell-take-publisher-to-court/ ''Retraction Watch''}}</ref> An external extrusion force pushes the vesicles of liposomes that are large through the polycarbonate membranes with pore sizes that are specific when the [[transition temperature]] of the phospholipids rises slightly due to the change in operating temperature{{explain|date=January 2023}}. Re-[[polymerization]] of the multiple compartments pr liposomes that are large in particle size occurs,<ref>{{Cite journal |date=2019-07-20 |title=Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology |journal=International Journal of Pharmaceutics |language=en |volume=566 |pages=680–686 |doi=10.1016/j.ijpharm.2019.06.013 |issn=0378-5173|last1=Singh |first1=Pushpendra |last2=Bodycomb |first2=Jeffrey |last3=Travers |first3=Bill |last4=Tatarkiewicz |first4=Kuba |last5=Travers |first5=Sean |last6=Matyas |first6=Gary R. |last7=Beck |first7=Zoltan |pmid=31176851 |s2cid=182950021 |doi-access=free }}</ref><ref>{{Cite book |url=https://www.taylorfrancis.com/books/mono/10.1201/9781420026054/water-insoluble-drug-formulation-ron-liu |title=Water-Insoluble Drug Formulation |date=2000-09-30 |publisher=CRC Press |isbn=978-0-429-13278-0 |language=en |doi=10.1201/9781420026054|editor-last1=Liu |editor-first1=Ron }}</ref> and smaller liposomes are created due to the rupturing of the membrane{{which|date=January 2023}} pores. Extrusion of liposomes occurs at a uniform size, based on the pore size in the [[polycarbonate]] [[membrane]].<ref name=":2">{{Cite journal |title=Google Scholar |url=https://scholar.google.com/scholar_lookup?journal=Langmuir&title=Studies+of+vesicle+extrusion&author=B.J.+Frisken&author=C.+Asman&author=P.J.+Patty&volume=16&publication_year=2000&pages=928-933&doi=10.1021/la9905113& |access-date=2022-12-28 |website=scholar.google.com |doi=10.1021/la9905113}}</ref> This happens when the big vesicles are passed through the [[cell membrane]] with a nanopore size specified in size several times<ref name=":2" /> due to the extrusion of polycarbonate membranes having uniform and vertical nanopore distribution on the surface of the membrane.<ref>{{Cite web |title=Why you should chose<!--sic--> extrusion for your liposomal enhancement – Biopharma Group – biopharma.co.uk |url=https://biopharma.co.uk/blog/2016/11/16/why-you-should-chose-extrusion-for-your-liposomal-enhancement/ |access-date=2022-12-28 |language=en-GB}}</ref><ref>{{Cite journal |last1=Olson |first1=F. |last2=Hunt |first2=C. A. |last3=Szoka |first3=F. C. |last4=Vail |first4=W. J. |last5=Papahadjopoulos |first5=D. |date=1979-10-19 |title=Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes |url=https://dx.doi.org/10.1016/0005-2736%2879%2990085-3 |journal=Biochimica et Biophysica Acta (BBA) - Biomembranes |language=en |volume=557 |issue=1 |pages=9–23 |doi=10.1016/0005-2736(79)90085-3 |pmid=95096 |issn=0005-2736}}</ref>


== Application ==
== Application ==

Latest revision as of 15:23, 25 June 2024

A liposome extruder is a device that prepares cell membranes, exosomes and also generates nanoscale liposome formulations.[1][2] The liposome extruder employs the track-etched membrane to filter huge particles and achieve sterile filtration.[3][4]

Schematic of a monolamellar liposome.

Function

[edit]

A liposome is made up of phospholipid bilayers, with the liposome being a spherical vesicle. Phospholipid bilayers have both hydrophobic and hydrophilic properties, which are important characteristics of cell membranes.[5] The hydrophobic ends of phospholipid molecules are constrained[clarification needed], often to each other, creating spherical liposomes that are smaller when the hydrophobic ends are exposed to a solution that is aqueous in nature. The preparation of liposomes results in the formation of the liposome extruder[clarification needed]. A liposome extruder is characterized by the uniform, narrow size distribution of its output, and has a particle-size control mechanism that is highly precise. Complex, toxic, injectable products such as the antifungal liposomal Amphotericin B, or the liposomal cytotoxic anticancer agents doxorubicin, paclitaxel, irinotecan, Adriamycin, and cytarabine contain liposomes which are prepared using the liposome extruder.[6]

The technology for extruding liposomes relies on the performance and structural characteristics of the lipid bilayers in the liposomal phospholipids.[how?][clarification needed][7] An external extrusion force pushes the vesicles of liposomes that are large through the polycarbonate membranes with pore sizes that are specific when the transition temperature of the phospholipids rises slightly due to the change in operating temperature[further explanation needed]. Re-polymerization of the multiple compartments pr liposomes that are large in particle size occurs,[8][9] and smaller liposomes are created due to the rupturing of the membrane[which?] pores. Extrusion of liposomes occurs at a uniform size, based on the pore size in the polycarbonate membrane.[10] This happens when the big vesicles are passed through the cell membrane with a nanopore size specified in size several times[10] due to the extrusion of polycarbonate membranes having uniform and vertical nanopore distribution on the surface of the membrane.[11][12]

Application

[edit]

Liposome extruders are applied in the formulation of liposomes of homogeneous size distributions.[3][13][14][15]

Types

[edit]

Hand-Driven liposome extruders

[edit]

This type of liposome extruder is primarily used in research laboratories, as it can process mini-sample volumes between 0.25 ml and 2.5 ml. The hand-driven liposome extruders are further categorized into liposome extruders with a thermal-jacketed option and liposome extruders under ambient temperature. They are operated by manually by pushing a plunger. Liposome extruders under ambient temperature can be fitted with a cooling jacket to regulate temperatures during liposome extrusion.[16][17]

Jacketed liposome extruders

[edit]

Jacketed liposome extruders are applied in laboratories and in pilot-scale research phases. They process volumes between 2 mL and 3 L. The jacketed extruders are fitted with barrels[clarification needed] to regulate the temperatures of the samples. To drive this extruder, a compressed nitrogen cylinder is used.[18]

Online liposome extruders

[edit]

Online liposome extruders process volumes of between 2 ml and 20L. They are driven by a high-pressure electric pump, making them appropriate for use in pilot-scale liposome production.[2]

Multiple liposome extruder system

[edit]

A multiple liposome extruder system is fitted with pressure and temperature sensors and a control panel to regulate liposome production. it processes capacities of between 1L and 200L.[19]

[edit]

References

[edit]
  1. ^ Berger, N; Sachse, A; Bender, J; Schubert, R; Brandl, M (2001-07-31). "Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics". International Journal of Pharmaceutics. 223 (1): 55–68. doi:10.1016/S0378-5173(01)00721-9. ISSN 0378-5173. PMID 11451632.
  2. ^ a b "Liposome Extruder-Genizer". www.genizer.com. Retrieved 2022-12-27.
  3. ^ a b Ong, Sandy Gim Ming; Chitneni, Mallikarjun; Lee, Kah Seng; Ming, Long Chiau; Yuen, Kah Hay (December 2016). "Evaluation of Extrusion Technique for Nanosizing Liposomes". Pharmaceutics. 8 (4): 36. doi:10.3390/pharmaceutics8040036. ISSN 1999-4923. PMC 5198018. PMID 28009829.
  4. ^ "Liposome Extruders". PharmTech. 16 December 2022. Retrieved 2022-12-27.
  5. ^ Akbarzadeh, Abolfazl; Rezaei-Sadabady, Rogaie; Davaran, Soodabeh; Joo, Sang Woo; Zarghami, Nosratollah; Hanifehpour, Younes; Samiei, Mohammad; Kouhi, Mohammad; Nejati-Koshki, Kazem (2013-02-22). "Liposome: classification, preparation, and applications". Nanoscale Research Letters. 8 (1): 102. Bibcode:2013NRL.....8..102A. doi:10.1186/1556-276X-8-102. ISSN 1556-276X. PMC 3599573. PMID 23432972.
  6. ^ Nayar, Rajiv; Hope, Michael J.; Cullis, Pieter R. (1989-11-27). "Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique". Biochimica et Biophysica Acta (BBA) - Biomembranes. 986 (2): 200–206. doi:10.1016/0005-2736(89)90468-9. ISSN 0005-2736.
  7. ^ Nakhaei, Pooria; Margiana, Ria; Bokov, Dmitry O.; Abdelbasset, Walid Kamal; Jadidi Kouhbanani, Mohammad Amin; Varma, Rajender S.; Marofi, Faroogh; Jarahian, Mostafa; Beheshtkhoo, Nasrin (2021-09-09). "Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol". Frontiers in Bioengineering and Biotechnology. 9: 705886. doi:10.3389/fbioe.2021.705886. ISSN 2296-4185. PMC 8459376. PMID 34568298. (Retracted, see doi:10.3389/fbioe.2023.1285118, PMID 37731758,  Retraction Watch. If this is an intentional citation to a retracted paper, please replace {{retracted|...}} with {{retracted|...|intentional=yes}}.)
  8. ^ Singh, Pushpendra; Bodycomb, Jeffrey; Travers, Bill; Tatarkiewicz, Kuba; Travers, Sean; Matyas, Gary R.; Beck, Zoltan (2019-07-20). "Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology". International Journal of Pharmaceutics. 566: 680–686. doi:10.1016/j.ijpharm.2019.06.013. ISSN 0378-5173. PMID 31176851. S2CID 182950021.
  9. ^ Liu, Ron, ed. (2000-09-30). Water-Insoluble Drug Formulation. CRC Press. doi:10.1201/9781420026054. ISBN 978-0-429-13278-0.
  10. ^ a b "Google Scholar". scholar.google.com. doi:10.1021/la9905113. Retrieved 2022-12-28.
  11. ^ "Why you should chose extrusion for your liposomal enhancement – Biopharma Group – biopharma.co.uk". Retrieved 2022-12-28.
  12. ^ Olson, F.; Hunt, C. A.; Szoka, F. C.; Vail, W. J.; Papahadjopoulos, D. (1979-10-19). "Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes". Biochimica et Biophysica Acta (BBA) - Biomembranes. 557 (1): 9–23. doi:10.1016/0005-2736(79)90085-3. ISSN 0005-2736. PMID 95096.
  13. ^ "Extruder Purification | Functionalized Liposome Pur..." www.leadingedgeonly.com. Retrieved 2022-12-29.
  14. ^ Pham, Dan The; Nguyen, Linh Phuong; Pham, Quynh Thi Huong; Pham, Chi Khanh; Pham, Dung Thuy Nguyen; Viet, Nguyen Thanh; Nguyen, Hong Van Thi; Tran, Toan Quoc; Nguyen, Duong Thanh (November 2022). "A low-cost, flexible extruder for liposomes synthesis and application for Murrayafoline A delivery for cancer treatment". Journal of Biomaterials Applications. 37 (5): 872–880. doi:10.1177/08853282221112491. ISSN 0885-3282. PMID 35786069. S2CID 250250856.
  15. ^ US 4927637, Moreno, Jacqueline K.; Martin, Francis J. & Woodle, Martin, "Liposome extrusion method", published 1990-05-22, assigned to Liposome Technology Inc. 
  16. ^ MacDonald, Robert C.; MacDonald, Ruby I.; Menco, Bert Ph. M.; Takeshita, Keizo; Subbarao, Nanda K.; Hu, Lan-rong (1991-01-30). "Small-volume extrusion apparatus for preparation of large, unilamellar vesicles". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1061 (2): 297–303. doi:10.1016/0005-2736(91)90295-J. ISSN 0005-2736. PMID 1998698.
  17. ^ Eto, Sumie; Matsumura, Rumie; Shimane, Yasuhiro; Fujimi, Mai; Berhanu, Samuel; Kasama, Takeshi; Kuruma, Yutetsu (2022-09-27). "Phospholipid synthesis inside phospholipid membrane vesicles". Communications Biology. 5 (1): 1016. doi:10.1038/s42003-022-03999-1. ISSN 2399-3642. PMC 9515091. PMID 36167778.
  18. ^ "진시스테크". jinsystech.co.kr (in Korean). Retrieved 2023-01-04.
  19. ^ Ariane, Peyret; Emmanuel, Ibarboure; Natassa, Pippa; Sebastien, Lecommandoux (2017). "Liposomes in Polymersomes: Multicompartment System with Temperature-Triggered Release". Langmuir. 33 (28): 7079–7085. doi:10.1021/acs.langmuir.7b00655. ISSN 0743-7463. PMID 28654295.