Atomic mirror: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 217.43.25.218 (talk) to last version by Gurch
DOI bot (talk | contribs)
m Citation maintenance. You can use this bot yourself! Please report any bugs.
Line 7: Line 7:
| journal=[[Journal of Physics B|JOPB]]
| journal=[[Journal of Physics B|JOPB]]
| volume=39
| volume=39
| pages=3723-3731
| pages=3723–3731
| year=2006
| year=2006
| doi=10.1088/0953-4075/39/18/002
}}</ref> [[electromagnetic wave]]s
}}</ref> [[electromagnetic wave]]s
<ref name="em">{{cite journal
<ref name="em">{{cite journal
Line 17: Line 18:
| journal=[[Physical Review Letters|PRL]]
| journal=[[Physical Review Letters|PRL]]
| volume=60
| volume=60
| pages=2137-2140
| pages=2137–2140
| year=1988
| year=1988
| doi=10.1103/PhysRevLett.60.2137
| format=subscription required
}}</ref>
}}</ref>
or just [[Si|silicon]] wafer; in the last case, atoms are reflected by the attracting tails of the van der Waals attraction ([[quantum reflection]]).<ref name="Fri">
or just [[Si|silicon]] wafer; in the last case, atoms are reflected by the attracting tails of the van der Waals attraction ([[quantum reflection]]).<ref name="Fri">
Line 28: Line 31:
|year=2002
|year=2002
|volume=65
|volume=65
|page=032902
|url=http://prola.aps.org/abstract/PRA/v65/i3/e032902
|url=http://prola.aps.org/abstract/PRA/v65/i3/e032902
|pages=032902
|format=subscription required
}}
}}
</ref><ref name="shimizu01">{{cite journal
</ref><ref name="shimizu01">{{cite journal
Line 38: Line 42:
| journal=[[Physical Review Letters|PRL]]
| journal=[[Physical Review Letters|PRL]]
| volume=86
| volume=86
| pages=987-990
| pages=987–990
| year=2001
| year=2001
| doi=10.1103/PhysRevLett.86.987
| format=subscription required
}}</ref><ref name="o1">{{cite journal
}}</ref><ref name="o1">{{cite journal
| url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000005052901000001&idtype=cvips&gifs=yes
| url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000005052901000001&idtype=cvips&gifs=yes
Line 63: Line 69:
| journal=[[Journal of the Physical Society of Japan]]
| journal=[[Journal of the Physical Society of Japan]]
| volume=71
| volume=71
| pages=5-8
| pages=5–8
| year=2002
| year=2002
| doi=10.1143/JPSJ.71.5
}}</ref><ref name="zeno">{{cite journal
}}</ref><ref name="zeno">{{cite journal
|comment=7
|comment=7
Line 73: Line 80:
| journal=[[Optical Review]]
| journal=[[Optical Review]]
| volume=12
| volume=12
| pages=1605-1623
| pages=1605–1623
| year=2005
| year=2005
| doi=10.1007/s10043-005-0363-9
}}</ref><ref name="fres">{{cite journal
}}</ref><ref name="fres">{{cite journal
|comment=9
|comment=9
Line 118: Line 126:
| journal=[[Optical Review]]
| journal=[[Optical Review]]
| volume=12
| volume=12
| pages=1605-1623
| pages=1605–1623
| year=200
| year=200
}}</ref> We may assume that the atom is "absorbed" or "measured" at the ridges. Frequent measuring (narrowly-spaced ridges) suppresses the transition of the particle to the half-space with absorbers, causing [[specular reflection]]. At large separation <math>~L~</math> between thin
}}</ref> We may assume that the atom is "absorbed" or "measured" at the ridges. Frequent measuring (narrowly-spaced ridges) suppresses the transition of the particle to the half-space with absorbers, causing [[specular reflection]]. At large separation <math>~L~</math> between thin
Line 142: Line 150:
| doi = 10.1103/PhysRevLett.88.123201
| doi = 10.1103/PhysRevLett.88.123201
| publisher = [[American Physical Society]]
| publisher = [[American Physical Society]]
| format = subscription required
}}</ref>
}}</ref>
*[[Atomic nanoscope]] <ref name="nanoscope">{{cite journal
*[[Atomic nanoscope]] <ref name="nanoscope">{{cite journal
Line 150: Line 159:
| journal=[[Journal of Physics B|JOPB]]
| journal=[[Journal of Physics B|JOPB]]
| volume=39
| volume=39
| pages=1605-1623
| pages=1605–1623
| year=2006
| year=2006
| doi=10.1088/0953-4075/39/7/005
}}</ref><ref>Atom Optics and Helium Atom Microscopy. Cambridge University, http://www-sp.phy.cam.ac.uk/research/mirror.php3</ref>
}}</ref><ref>Atom Optics and Helium Atom Microscopy. Cambridge University, http://www-sp.phy.cam.ac.uk/research/mirror.php3</ref>



Revision as of 17:13, 28 May 2008

In physics, an atomic mirror is a device which reflects neutral atoms in the similar way as the conventional mirror reflects visible light. Atomic mirrors can be made of electric fields or magnetic fields,[1] electromagnetic waves [2] or just silicon wafer; in the last case, atoms are reflected by the attracting tails of the van der Waals attraction (quantum reflection).[3][4][5] Such reflection is efficient when the normal component of the wavenumber of the atoms is small or comparable to the effective depth of the attraction potential (roughly, the distance at which the potential becomes comparable to the kinetic energy of the atom). To reduce the normal component, most atomic mirrors are blazed at the grazing incidence.

Ridged mirror. The wave with wavevector is scattered at ridges separated by distance

At grazing incidence, the efficiency of the quantum reflection can be enhanced by a surface covered with ridges (ridged mirror).[6][7][8][9]

The set of narrow ridges reduces the van der Waals attraction of atoms to the surfaces and enhances the reflection. Each ridge blocks part of the wavefront, causing Fresnel diffraction.[8]

Such a mirror can be interpreted in terms of the Zeno effect.[7] We may assume that the atom is "absorbed" or "measured" at the ridges. Frequent measuring (narrowly-spaced ridges) suppresses the transition of the particle to the half-space with absorbers, causing specular reflection. At large separation between thin ridges, the reflectivity of the ridged mirror is determined by dimensionless momentum , and does not depend on the origin of the wave; therefore, it is suitable for reflection of atoms.

Applications

See also

References

  1. ^ H.Merimeche (2006). "Atomic beam focusing with a curved magnetic mirror". JOPB. 39: 3723–3731. doi:10.1088/0953-4075/39/18/002. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help)
  2. ^ V. I. Balykin (1988). "Quantum-State-Selective Mirror Reflection of Atoms by Laser Light" (subscription required). PRL. 60: 2137–2140. doi:10.1103/PhysRevLett.60.2137. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ H.Friedrich (2002). "quantum reflection by Casimir–van der Waals potential tails" (subscription required). PRA. 65: 032902. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ F.Shimizu (2001). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface" (subscription required). PRL. 86: 987–990. doi:10.1103/PhysRevLett.86.987. {{cite journal}}: Unknown parameter |comment= ignored (help)
  5. ^ H.Oberst (2005). "Quantum reflection of He* on silicon". PRA. 71: 052901. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ F.Shimizu (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan. 71: 5–8. doi:10.1143/JPSJ.71.5. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |comment= ignored (help)
  7. ^ a b D.Kouznetsov (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review. 12: 1605–1623. doi:10.1007/s10043-005-0363-9. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |comment= ignored (help) Cite error: The named reference "zeno" was defined multiple times with different content (see the help page).
  8. ^ a b H.Oberst (2005). "Fresnel Diffraction Mirror for an Atomic Wave". PRL. 94: 013203. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |comment= ignored (help)
  9. ^ D.Kouznetsov (2005). "Scattering of waves at ridged mirrors". PRA. 72: 013617. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |free= ignored (help)
  10. ^ Shimizu (2002). "Reflection-Type Hologram for Atoms" (subscription required). PRL. 88 (12). American Physical Society: 123201. doi:10.1103/PhysRevLett.88.123201. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |comment= ignored (help); Unknown parameter |month= ignored (help); Unknown parameter |numpages= ignored (help)
  11. ^ D.Kouznetsov (2006). "Ridged atomic mirrors and atomic nanoscope". JOPB. 39: 1605–1623. doi:10.1088/0953-4075/39/7/005. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ Atom Optics and Helium Atom Microscopy. Cambridge University, http://www-sp.phy.cam.ac.uk/research/mirror.php3