Spartan (chemistry software): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎See also: added quantum composite methods to related (see also) section
→‎Computational Capabilities: added PM6 reference
Line 28: Line 28:
**[[Merck Molecular Force Field|MMFF]]<ref>{{cite journal | author = Thomas A. Halgren| title = Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 | journal = Journal of Computational Chemistry | year = 1996 | volume = 17 (5-6) | pages = 490–519 |publisher= Wiley InterScience |doi = 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P}}</ref>, (for validation test suite<ref>[http://www.ccl.net/cca/data/MMFF94/ MMFF94 on Computational Chemistry List]</ref>), MMFF with extensions, and SYBYL<ref>{{cite journal | author = Matthew Clark, Richard D. Cramer III, and Nicole Van Opdenbosch| title = Validation of the general purpose tripos 5.2 force field | journal = Journal of Computational Chemistry | year = 1989 | volume = 10 (8) | pages = 982–1012 |publisher= Wiley InterScience |doi = 10.1002/jcc.540100804}}</ref> [[Force field (chemistry)|force fields]]
**[[Merck Molecular Force Field|MMFF]]<ref>{{cite journal | author = Thomas A. Halgren| title = Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 | journal = Journal of Computational Chemistry | year = 1996 | volume = 17 (5-6) | pages = 490–519 |publisher= Wiley InterScience |doi = 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P}}</ref>, (for validation test suite<ref>[http://www.ccl.net/cca/data/MMFF94/ MMFF94 on Computational Chemistry List]</ref>), MMFF with extensions, and SYBYL<ref>{{cite journal | author = Matthew Clark, Richard D. Cramer III, and Nicole Van Opdenbosch| title = Validation of the general purpose tripos 5.2 force field | journal = Journal of Computational Chemistry | year = 1989 | volume = 10 (8) | pages = 982–1012 |publisher= Wiley InterScience |doi = 10.1002/jcc.540100804}}</ref> [[Force field (chemistry)|force fields]]
*'''[[Semi-empirical quantum chemistry method|Semi-empirical calculations]]'''.
*'''[[Semi-empirical quantum chemistry method|Semi-empirical calculations]]'''.
**[[MNDO| MNDO/MNDO(D)]]<ref>{{cite journal | title = Ground states of molecules. 38. The MNDO method. Approximations and parameters | author = Michael J. S. Dewar and Walter Thiel | journal = The Journal of the American Chemical Society | volume = 99 (15) | pages = 4899–4907 | publisher = ACS Publications | year = 1977 | doi = 10.1021/ja00457a004 }}</ref>, [[Austin Model 1|AM1]]<ref>{{cite journal | title = Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions| author = Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. Stewart | journal = The Journal of the American Chemical Society | volume = 107 (19) | pages = 3902–3909 | publisher = ACS Publications | year = 1985 | doi = 10.1021/ja00299a024 }}</ref>, [[PM3 (chemistry)|PM3]]<ref>{{cite journal | title = Optimization of parameters for semiempirical methods I. Method | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 10 (2) | pages = 209–220 | publisher = Wiley InterScience | year = 1989 | doi = 10.1002/jcc.540100208 }}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods II. Applications | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 10 (2) | pages = 221–264 | publisher = Wiley InterScience | year = 1989 | doi = 10.1002/jcc.540100209}}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 12 (3) | pages = 320–341 | publisher = Wiley InterScience | year = 1991 | doi = 10.1002/jcc.540120306}}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. | author = James J. P. Stewart | journal = The Journal of Molecular Modeling | volume = 10 (2) | pages = 155–164 | publisher = Springer Berlin / Heidelberg | year = 2004 | doi = 10.1007/s00894-004-0183-z}}</ref>, and [[RM1]]<ref>{{cite journal | title = RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I | author = Gerd B. Rocha, Ricardo O. Freire, Alfredo M. Simas, James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 27 (10) | pages = 1101–1111 | publisher = Wiley InterScience | year = 2006 | doi = 10.1002/jcc.20425}}</ref>
**[[MNDO| MNDO/MNDO(D)]]<ref>{{cite journal | title = Ground states of molecules. 38. The MNDO method. Approximations and parameters | author = Michael J. S. Dewar and Walter Thiel | journal = The Journal of the American Chemical Society | volume = 99 (15) | pages = 4899–4907 | publisher = ACS Publications | year = 1977 | doi = 10.1021/ja00457a004 }}</ref>, [[Austin Model 1|AM1]]<ref>{{cite journal | title = Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions| author = Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. Stewart | journal = The Journal of the American Chemical Society | volume = 107 (19) | pages = 3902–3909 | publisher = ACS Publications | year = 1985 | doi = 10.1021/ja00299a024 }}</ref>, [[PM3 (chemistry)|PM3]]<ref>{{cite journal | title = Optimization of parameters for semiempirical methods I. Method | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 10 (2) | pages = 209–220 | publisher = Wiley InterScience | year = 1989 | doi = 10.1002/jcc.540100208 }}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods II. Applications | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 10 (2) | pages = 221–264 | publisher = Wiley InterScience | year = 1989 | doi = 10.1002/jcc.540100209}}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. | author = James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 12 (3) | pages = 320–341 | publisher = Wiley InterScience | year = 1991 | doi = 10.1002/jcc.540120306}}</ref><ref>{{cite journal | title = Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. | author = James J. P. Stewart | journal = The Journal of Molecular Modeling | volume = 10 (2) | pages = 155–164 | publisher = Springer Berlin / Heidelberg | year = 2004 | doi = 10.1007/s00894-004-0183-z}}</ref>, [[RM1]]<ref>{{cite journal | title = RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I | author = Gerd B. Rocha, Ricardo O. Freire, Alfredo M. Simas, James J. P. Stewart | journal = The Journal of Computational Chemistry | volume = 27 (10) | pages = 1101–1111 | publisher = Wiley InterScience | year = 2006 | doi = 10.1002/jcc.20425}}</ref> PM6 <ref> >{{cite journal | title = Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements.| author = James J. P. Stewart | journal = The Journal of Molecular Modeling | volume = 13 | pages = 1173–1213 | publisher = Springer | year = 2007 | doi: 10.1007/s00894-007-0233-4}}</ref> (to be released in Spartan'10 version 1.1).
*'''[[Hartree–Fock method|Hartree-Fock]] / [[Self-consistent field|SCF]] methods''', available with [[implicit solvent]] (SM8)<ref name = 'SM8'>{{cite journal | title = Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges | author = Aleksandr V. Marenich, Ryan M. Olson, Casey P. Kelly, Christopher J. Cramer, and Donald G. Truhlar | journal = The Journal of Chemical Theory and Computation | volume = 3 (6) | pages = 2011–2033 | publisher = ACS Publications | year = 2007 | doi = 10.1021/ct7001418}}</ref>.
*'''[[Hartree–Fock method|Hartree-Fock]] / [[Self-consistent field|SCF]] methods''', available with [[implicit solvent]] (SM8)<ref name = 'SM8'>{{cite journal | title = Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges | author = Aleksandr V. Marenich, Ryan M. Olson, Casey P. Kelly, Christopher J. Cramer, and Donald G. Truhlar | journal = The Journal of Chemical Theory and Computation | volume = 3 (6) | pages = 2011–2033 | publisher = ACS Publications | year = 2007 | doi = 10.1021/ct7001418}}</ref>.
**[[Hartree-Fock|Restricted]], [[Unrestricted Hartree-Fock|Unrestricted]], and [[Restricted Open-shell Hartree-Fock]]
**[[Hartree-Fock|Restricted]], [[Unrestricted Hartree-Fock|Unrestricted]], and [[Restricted Open-shell Hartree-Fock]]

Revision as of 22:41, 18 February 2011

Spartan'10 Software
Developer(s)Wavefunction & Q-Chem
Stable release
1.0.1 / January 5, 2011; 13 years ago (2011-01-05)
Written in C, C++, Fortran, Qt
Operating systemCross-platform
TypeMolecular Modeling Software
LicenseWavefunction, Inc. EULA
WebsiteWavefunction

SPARTAN is a molecular modelling and computational chemistry application from Wavefunction, Inc.[1] It contains code for molecular mechanics, semi-empirical methods, ab initio models[2], density functional theory methods[3], post-Hartree-Fock methods, and thermochemical recipes including T1[4].

Molecular mechanics calculations and quantum chemical calculations play an ever-increasing role in modern chemistry. Primary functions are to supply information about structures, relative stabilities and other properties of isolated molecules. Because of their inherent simplicity, molecular mechanics calculations on complex molecules are widespread throughout the chemical community. Quantum chemical calculations, including Hartree-Fock molecular orbital calculations, but especially calculations that include electron correlation, are much more time demanding. Only recently, have fast enough computers become widely available to make their application routine among mainstream chemists.

Quantum chemical calculations are also called upon to furnish information about mechanisms and product distributions of chemical reactions, either directly by calculations on transition states, or based on the Hammond Postulate[5], by modeling the steric and electronic demands of the reactants. Quantitative calculations, leading directly to information about the geometries of transition states, and about reaction mechanisms in general, are increasingly common, while qualitative models are still needed for systems that are too large to be subjected to more rigorous treatments. Quantum chemical calculations can supply information to complement existing experimental data or replace it altogether, for example, atomic charges for QSAR[6] analyses, and intermolecular potentials for molecular mechanics and molecular dynamics calculations.

SPARTAN is a modern molecular modeling program, while its developmental roots stretch back to the beginning of computational chemistry programs[7], current versions are designed to apply computational chemistry methods (theoretical models) to a number of a standard tasks that provide chemists with calculated data applicable to the determination of molecular shape (conformation), structure (equilibrium and transition state geometry), spectral properties, molecular (and atomic) properties, reactivity and selectivity.

Computational Capabilities

According to the most recent SPARTAN[8] manual[9], the software provides the following computational approaches[10]:

Graphical Models

A cut-away Electrostatic Potential Map of fullerene (C60), the blue area inside the molecule is an area of relatively positive charge.

SPARTAN is commonly employed to calculate and display a number of graphical models. Use of graphical models, especially molecular orbitals, electron density, and electrostatic potential maps, has become a routine means of molecular visualization in chemistry education.[67][68][69]

Spectral Calculations

The calculated (DFT/EDF2/6-31G*) FT-IR spectra (in red), scaled and optimized to the experimental FT-IR spectra (in blue) for the molecule phenyl 9-acridinecarboxylate.

Major Release history


See also

References

  1. ^ Computational Chemistry, David Young, Wiley-Interscience, 2001. Appendix A. A.1.6 pg 330, SPARTAN
  2. ^ Hehre, Warren J. (1986). AB INITIO Molecular Orbital Theory. John Wiley & Sons. ISBN 0-471-81241-2. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Hohenberg, Pierre (1964). "Inhomogeneous electron gas". Physical Review. 136 (3B): B864–B871. doi:10.1103/PhysRev.136.B864. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ a b Ohlinger, William S. (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. 113 (10) (10). ACS Publications: 2165–2175. doi:10.1021/jp810144q. PMID 19222177. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Hammond, G. S. (1955). "A Correlation of Reaction Rates". The Journal of the American Chemical Society. 77 (2). ACS Publications: 334–338. doi:10.1021/ja01607a027.
  6. ^ Leach, Andrew R. (2001). Molecular modelling: principles and applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 0-582-38210-6.
  7. ^ W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70 (Quantum Chemistry Program Exchange, Program No. 237, 1970)
  8. ^ [1] There are several Spartan versions, this comparison chart documents major differences.
  9. ^ Spartan Tutorial & User's Guide ISBN 1-890661-38-4
  10. ^ [2] An assessment of most computational models is available. Hehre, Warren J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations. Irvine, California: Wavefunction, Inc. pp. 85–100, . ISBN 1-890661-06-6.{{cite book}}: CS1 maint: extra punctuation (link)
  11. ^ Thomas A. Halgren (1996). "Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94". Journal of Computational Chemistry. 17 (5-6). Wiley InterScience: 490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.
  12. ^ MMFF94 on Computational Chemistry List
  13. ^ Matthew Clark, Richard D. Cramer III, and Nicole Van Opdenbosch (1989). "Validation of the general purpose tripos 5.2 force field". Journal of Computational Chemistry. 10 (8). Wiley InterScience: 982–1012. doi:10.1002/jcc.540100804.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Michael J. S. Dewar and Walter Thiel (1977). "Ground states of molecules. 38. The MNDO method. Approximations and parameters". The Journal of the American Chemical Society. 99 (15). ACS Publications: 4899–4907. doi:10.1021/ja00457a004.
  15. ^ Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. Stewart (1985). "Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions". The Journal of the American Chemical Society. 107 (19). ACS Publications: 3902–3909. doi:10.1021/ja00299a024.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods I. Method". The Journal of Computational Chemistry. 10 (2). Wiley InterScience: 209–220. doi:10.1002/jcc.540100208.
  17. ^ James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods II. Applications". The Journal of Computational Chemistry. 10 (2). Wiley InterScience: 221–264. doi:10.1002/jcc.540100209.
  18. ^ James J. P. Stewart (1991). "Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi". The Journal of Computational Chemistry. 12 (3). Wiley InterScience: 320–341. doi:10.1002/jcc.540120306.
  19. ^ James J. P. Stewart (2004). "Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements". The Journal of Molecular Modeling. 10 (2). Springer Berlin / Heidelberg: 155–164. doi:10.1007/s00894-004-0183-z.
  20. ^ Gerd B. Rocha, Ricardo O. Freire, Alfredo M. Simas, James J. P. Stewart (2006). "RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I". The Journal of Computational Chemistry. 27 (10). Wiley InterScience: 1101–1111. doi:10.1002/jcc.20425.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ >James J. P. Stewart (2007). "Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements". The Journal of Molecular Modeling. 13. Springer: 1173–1213. {{cite journal}}: Text "doi: 10.1007/s00894-007-0233-4" ignored (help)
  22. ^ a b Aleksandr V. Marenich, Ryan M. Olson, Casey P. Kelly, Christopher J. Cramer, and Donald G. Truhlar (2007). "Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges". The Journal of Chemical Theory and Computation. 3 (6). ACS Publications: 2011–2033. doi:10.1021/ct7001418.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ a b c A. D. Becke (September, 1988). "Density-functional exchange-energy approximation with correct asymptotic behavior". Physical Review A. 38 (6). American Physical Society: 3098–3100. doi:10.1103/PhysRevA.38.3098. PMID 9900728. {{cite journal}}: Check date values in: |date= (help)
  24. ^ John P. Perdew (1986). "Density-functional approximation for the correlation energy of the inhomogeneous electron gas". Physical Review B. 33). American Physical Society: 8822–8824. doi:10.1103/PhysRevB.33.8822.
  25. ^ a b Lee, Chengeth (January 15, 1988). "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density". Physical Review B. 37 (2). American Physical Society: 785–789. doi:10.1021/jp068409j. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  26. ^ a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch (1994). "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields". The Journal of Physical Chemistry. 98 (45). ACS Publications: 11623–11627. doi:10.1021/j100096a001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ a b Ross D. Adamsona, Peter M. W. Gill and John A. Pople (1998). "Empirical density functionals". Chemical Physics Letters. 284 (5-6). Elsevier: 6–11. doi:10.1016/S0009-2614(97)01282-7.
  28. ^ a b Peter M. W. Gill, Yeh Lin Ching and Michael W. George (2004). "EDF2: A density functional for predicting molecular vibrational frequencies". Australian Journal of Chemistry. 57 (4). Commonwealth Scientific and Industrial Research Organization: 365–370. doi:10.1071/CH03263.
  29. ^ a b c Yan Zhao and Donald G. Truhlar (2008). "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals". Theoretical Chemistry Accounts. 120 (1-3). Springer Berlin / Heidelberg: 215–241. doi:10.1007/s00214-007-0310-x.
  30. ^ a b J. D. Chai and Martin Head-Gordon (2008). "Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections". Physical Chemistry Chemical Physics. 10 (44). RSC Publishing: 6615–66120. doi:10.1039/b810189b.
  31. ^ P.A.M. Dirac (July, 1930). "Note on Exchange Phenomena in the Thomas Atom". Mathematical Proceedings of the Cambridge Philosophical Society. 26 (3). Cambridge Journals: 376–385. doi:10.1017/S0305004100016108. {{cite journal}}: Check date values in: |date= (help)
  32. ^ Peter M. W. Gill (October, 1996). "A new gradient-corrected exchange functional". Molecular Physics. 89 (2). Taylor & Francis: 433–445. doi:10.1080/00268979609482484. {{cite journal}}: Check date values in: |date= (help)
  33. ^ A.T.B. Gilbert and P.M.W. Gill (1999). "Decomposition of exchange-correlation energies". Chemical Physics Letters. 312 (5-6). Elsevier: 511–521. doi:10.1016/S0009-2614(99)00836-2.
  34. ^ John P. Perdew and Yue Wang (1992). "Accurate and simple analytic representation of the electron-gas correlation energy". Physical Review B. 45 (23). American Physical Society: 13244–13249. doi:10.1103/PhysRevB.45.13244.
  35. ^ Vosko, S.H. (August 1, 1980). "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis". Canadian Journal of Physics. 58. NRC Research Press: 1200–1211. doi:10.1139/p80-159. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  36. ^ John P. Perdew and Yue Wang (June, 1992). "Accurate and simple analytic representation of the electron-gas correlation energy". Physical Review B. 45. The American Physical Society: 13244–13249. doi:10.1103/PhysRevB.45.13244. {{cite journal}}: Check date values in: |date= (help)
  37. ^ J. P. Perdew (1981). "Density-functional approximation for the correlation energy of the inhomogeneous electron gas". Physical Review B. 23. The American Physical Society: 5048. doi:10.1103/PhysRevB.23.5048.
  38. ^ J. P. Perdew and A. Zunger (1986). "Self-interaction correction to density-functional approximations for many-electron systems". Physical Review B. 33. The American Physical Society: 8822–8824. doi:10.1103/PhysRevB.33.8822.
  39. ^ John P. Perdew, Kieron Burke, and Matthias Ernzerhof (October 1996). "Generalized Gradient Approximation Made Simple". Physical Review Letters. 77 (18). American Physical Society: 3865–3868. doi:10.1103/PhysRevLett.77.3865. PMID 10062328.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ A. D. Becke and M. R. Roussel (1989). "Exchange holes in inhomogeneous systems: A coordinate-space model". Physical Review A. 39 (8). The American Physical Society: 3761–3767. doi:10.1103/PhysRevA.39.3761. PMID 9901696.
  41. ^ A. Daniel Boese and Jan M. L. Martin (2004). "Development of density functionals for thermochemical kinetics". The Journal of Chemical Physics. 121 (8). American Institute of Physics: 3405–3417. doi:10.1063/1.1774975.
  42. ^ a b Yan Zhao, Nathan E. Schultz, and Donald G. Truhlar (2006). "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions". The Journal of Chemical Theory and Computation. 2 (2). ACS Publications: 364–382. doi:10.1021/ct0502763.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Yan Zhao and Donald G. Truhlar (2008). "A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions". The Journal of Chemical Physics. 125 (8). American Institute of Physics: 194101–194119. doi:10.1063/1.2370993.
  44. ^ Yan Zhao and Donald G. Truhlar (2008). "Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States". The Journal of Physical Chemistry A. 110 (49). ACS Publications: 13126–13130. doi:10.1021/jp066479k.
  45. ^ a b Jeng-Da Chai and Martin Head-Gordon (2006). "Systematic optimization of long-range corrected hybrid density functionals". The Journal of Chemical Physics. 128 (8). American Institute of Physics: 084106–084121. doi:10.1063/1.2834918.
  46. ^ George D. Purvis and Rodney J. Bartlett (1982). "A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples". The Journal of Chemical Physics. 76 (4). The American Institute of Physics: 1910–1919. doi:10.1063/1.443164.
  47. ^ Krishnan Raghavachari, Gary W. Trucks, John A. Pople and, Martin Head-Gordon (March 24, 1989). "A fifth-order perturbation comparison of electron correlation theories". Chemical Physics Letters. 157 (6). Elsevier Science: 479–483. doi:10.1016/S0009-2614(89)87395-6.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Troy Van Voorhis and Martin Head-Gordon (June 19, 2001). "Two-body coupled cluster expansions". The Journal of Chemical Physics. 115 (11). The American Institute of Physics: 5033–5041. doi:10.1063/1.1390516.
  49. ^ C. David Sherrill, Anna I. Krylov, Edward F. C. Byrd, and Martin Head-Gordon (June 11, 1998). "Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+". The Journal of Chemical Physics. 109 (11). The American Institute of Physics: 4171–4182. doi:10.1063/1.477023.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Steven R. Gwaltney and Martin Head-Gordon (June 9, 2000). "A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian". Chemical Physics Letters. 323 (1-2). Elsevier: 21–28. doi:10.1016/S0009-2614(00)00423-1.
  51. ^ Troy Van Voorhis and Martin Head-Gordon (November 17, 2000). "The quadratic coupled cluster doubles model". Chemical Physics Letters. 330 (5-6). Elsevier: 585–594. doi:10.1016/S0009-2614(00)01137-4.
  52. ^ a b c Anna I. Krylov, C. David Sherrill, Edward F. C. Byrd, and Martin Head-Gordon (September 15, 1998). "Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model". The Journal of Chemical Physics. 109 (24). The American Institute of Physics: 10669–10678. doi:10.1063/1.477764.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Chr. Møller and M. S. Plesset (October, 1934). "Note on an Approximation Treatment form Many-Electron Systems". Physical Review. 44 (7). The American Physical Society: 618–622. doi:10.1103/PhysRev.46.618. {{cite journal}}: Check date values in: |date= (help)
  54. ^ Krishnan Raghavachari and John A. Pople (February 22, 1978). "Approximate fourth-order perturbation theory of the electron correlation energy". International Journal of Quantum Chemistry. 14 (1). Wiley InterScience: 91–100. doi:10.1002/qua.560140109.
  55. ^ Martin Feyereisena, George Fitzgeralda and Andrew Komornickib (May 10, 1993). "Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods". Chemical Physics Letters. 208 (5-6). Elsevier: 359–363. doi:10.1016/0009-2614(93)87156-W.
  56. ^ Florian Weigend and Marco Häser (October 13, 1997). "RI-MP2: first derivatives and global consistency". Theoretical Chemistry Accounts. 97 (1-4). Springer Berlin / Heidelberg: 331–340. doi:10.1007/s002140050269.
  57. ^ Robert A. Distasio JR., Ryan P. Steele, Young Min Rhee, Yihan Shao, and Martin Head-Gordon (April 15, 2007). "An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis". Journal of Computational Chemistry. 28 (5). Wiley InterScience: 839–856. doi:10.1002/jcc.20604.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ Erich Runge and E. K. U. Gross (October 1984). "Density-Functional Theory for Time-Dependent Systems". Physical Review Letters. 52 (12). American Physical Society: 997–1000. doi:10.1103/PhysRevLett.52.997.
  59. ^ So Hirata and Martin Head-Gordon (1999). "Time-dependent density functional theory for radicals: An improved description of excited states with substantial double excitation character". Chemical Physics Letters. 302 (5-6). Elsevier: 375–382. doi:10.1016/S0009-2614(99)00137-2.
  60. ^ David Maurice and Martin Head-Gordon (May 10, 1999). "Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone". Molecular Physics. 96 (10). Taylor & Francis: 1533–1541. doi:10.1080/00268979909483096.
  61. ^ Martin Head-Gordon, Rudolph J. Rico, Manabu Oumi, and Timothy J. Lee (1994). "A doubles correction to electronic excited states from configuration interaction in the space of single substitutions". Chemical Physics Letters. 219 (1-2). Elsevier: 21–29. doi:10.1016/0009-2614(94)00070-0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ a b John A. Pople, Martin Head‐Gordon, and Krishnan Raghavachari (1987). "Quadratic configuration interaction. A general technique for determining electron correlation energies". The Journal of Chemical Physics. 87 (10). American Institute of Physics: 5968–35975. doi:10.1063/1.453520.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Rhee, Young Min (May 4, 2007). "Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods". The Journal of Physical Chemistry A. 111 (24). ACS Publications: 5314–5326. doi:10.1021/jp068409j. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  64. ^ Larry A. Curtiss, Krishnan Raghavachari, Gary W. Trucks, and John A. Pople (February 15, 1991). "Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds". The Journal of Chemical Physics. 94 (11). The American Institute of Physics: 7221–7231. doi:10.1063/1.460205.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  65. ^ Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern, Vitaly Rassolov, and John A. Pople (July 22, 1998). "Gaussian-3 (G3) theory for molecules containing first and second-row atoms". The Journal of Chemical Physics. 109 (18). The American Institute of Physics: 7764–7776. doi:10.1063/1.477422.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Larry A. Curtiss, Paul C. Redfern, Krishnan Raghavachari, Vitaly Rassolov, and John A. Pople (November 23, 1998). "Gaussian-3 theory using reduced Møller-Plesset order". The Journal of Chemical Physics. 110 (10). The American Institute of Physics: 4703–4710. doi:10.1063/1.478385.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Alan J. Shusterman and Gwendolyn P. Shusterman (1997). "Teaching Chemistry with Electron Density Models". The Journal of Chemical Education. 74 (7). ACS Publications: 771–775. doi:10.1021/ed074p771.
  68. ^ Hehre, Warren J. (1998). Molecular Modeling Workbook for Organic Chemistry. Wavefunction, Inc. ISBN 1-890661-06-6. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  69. ^ Smith, Michael B. (2010). Organic Synthesis, 3rd Edition. Wavefunction, Inc. pp. CH.2 & CH.11 modeling problems. ISBN 978-1-890661-40-3.
  70. ^ Anthony P. Scott and Leo Radom (1996). "Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors". The Journal of Physical Chemistry. 100 (41). ACS Publications: 16502–16513. doi:10.1021/jp960976r.
  71. ^ Benny G. Johnson and Jan Florián (1995). "The prediction of Raman spectra by density functional theory. Preliminary findings". Chemical Physics Letters. 47 (1-2). Elsevier: 120–125. doi:10.1016/0009-2614(95)01186-9.
  72. ^ Krzysztof Wolinski, James F. Hinton, Peter Pulay (1990). "Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations". The Journal of the American Chemical Society. 112 (23). ACS Publications: 8251–8260. doi:10.1021/ja00179a005.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links