Jump to content

Solar–hydrogen energy cycle: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Features: added feature
→‎Features: added feature
Line 6: Line 6:


==Features==
==Features==
The Solar–Hydrogen energy cycle can be incorporated using [[Thin film solar cell#Organic solar cells|organic thin film solar cell]]s<ref>{{cite journal|last1=Nakato|first1=Y.|last2=Jia|first2=G.|last3=Ishida|first3=M.|last4=Morisawa|first4=K.|last5=Fujitani|first5=M.|last6=Hinogami|first6=R.|last7=Yae|first7=S.|year=1998|month=Jun|day=10|title=Efficient Solar-to-Chemical Conversion by One Chip of n-Type Silicon with Surface Asymmetry|journal=Electrochem. Solid-State Lett.|volume=1|issue=2|pages=71-73|publisher=[[Electrochemical Society]]|doi=10.1149/1.1390640|url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=ESLEF6000001000002000071000001&idtype=cvips&gifs=yes&ref=no|location=[[Osaka]], [[Japan]]|accessdate=2011-07-20}}</ref> and [[microcrystalline silicon]] [[thin film solar cell]]s<ref>{{cite journal|last1=Yae|first1=Shinji|last2=Kobayashi|first2=Tsutomu|last3=Abe|first3=Makoto|last4=Nasu|first4=Noriaki|last5=Fukumuro|first5=Naoki|last6=Ogawa|first6=Shunsuke|last7=Yoshida|first7=Norimitsu|last8=Nonomura|first8=Shuichi|last9=Nakato|first9=Yoshihiro|last10=Matsuda|first10=Hitoshi|year=2007|month=Feb|day=15|title=Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode|journal=Solar Energy Materials and Solar Cells|volume=91|issue=4|pages=224-229|publisher=[[ScienceDirect]]|doi=10.1016/j.solmat.2006.08.010|url=http://www.sciencedirect.com/science/article/pii/S092702480600362X|location=[[Japan]]|accessdate=2011-07-20}}</ref>
The Solar–Hydrogen energy cycle can be incorporated using [[Thin film solar cell#Organic solar cells|organic thin film solar cell]]s<ref>{{cite journal|last1=Nakato|first1=Y.|last2=Jia|first2=G.|last3=Ishida|first3=M.|last4=Morisawa|first4=K.|last5=Fujitani|first5=M.|last6=Hinogami|first6=R.|last7=Yae|first7=S.|year=1998|month=Jun|day=10|title=Efficient Solar-to-Chemical Conversion by One Chip of n-Type Silicon with Surface Asymmetry|journal=Electrochem. Solid-State Lett.|volume=1|issue=2|pages=71-73|publisher=[[Electrochemical Society]]|doi=10.1149/1.1390640|url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=ESLEF6000001000002000071000001&idtype=cvips&gifs=yes&ref=no|location=[[Osaka]], [[Japan]]|accessdate=2011-07-20}}</ref> and [[microcrystalline silicon]] [[thin film solar cell]]s<ref>{{cite journal|last1=Yae|first1=Shinji|last2=Kobayashi|first2=Tsutomu|last3=Abe|first3=Makoto|last4=Nasu|first4=Noriaki|last5=Fukumuro|first5=Naoki|last6=Ogawa|first6=Shunsuke|last7=Yoshida|first7=Norimitsu|last8=Nonomura|first8=Shuichi|last9=Nakato|first9=Yoshihiro|last10=Matsuda|first10=Hitoshi|year=2007|month=Feb|day=15|title=Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode|journal=Solar Energy Materials and Solar Cells|volume=91|issue=4|pages=224-229|publisher=[[ScienceDirect]]|doi=10.1016/j.solmat.2006.08.010|url=http://www.sciencedirect.com/science/article/pii/S092702480600362X|location=[[Japan]]|accessdate=2011-07-20}}</ref> This cycle can also be incorporated using [[Photoelectrochemical cell|photoelectrochemical solar cells]]. These solar have been incorporated since 1972<ref name=spie>{{cite web|url=http://spie.org/x8413.xml?ArticleID=x8413|title=Water splitting to produce solar hydrogen using silicon thin film|publisher=spie.org|accessdate=2011-08-30|work=}}</ref> for hydrogen production.<ref>{{cite journal|last1=Fujishima|first1=Akira|last2=Honda|first2=Kenichi|year=1972|month=Jul|day=07|title=Electrochemical Photolysis of Water at a Semiconductor Electrode|journal=[[Nature (journal)|Nature]]|volume=238|issue=1|pages=37-38|publisher=[[Nature Publishing Group]]|doi=10.1038/238037a0|url=http://www.nature.com/nature/journal/v238/n5358/abs/238037a0.html|location=[[Japan]]|accessdate=2011-07-20}}</ref>


==Advantages==
==Advantages==

Revision as of 06:49, 30 August 2011

Solar–Hydrogen energy cycle is an energy cycle where a solar powered electrolyzer is used to convert water to hydrogen and oxygen. Hydrogen and oxygen produced thus are stored to be used by a fuel cell to produce electricity when no sunlight is available.[1]

Working

Photovoltaic panels convert sunlight to electricity. In this cycle, the excess electricity produced after consumption by devices connected to the system, is used to power an electrolyzer. The electrolyzer converts water into hydrogen and oxygen, which is stored. This hydrogen is used up by a fuel cell to produce electricity, which can power the devices when sunlight is unavailable.[1]

Features

The Solar–Hydrogen energy cycle can be incorporated using organic thin film solar cells[2] and microcrystalline silicon thin film solar cells[3] This cycle can also be incorporated using photoelectrochemical solar cells. These solar have been incorporated since 1972[4] for hydrogen production.[5]

Advantages

  • This cycle is pollution free as the only effluent from this cycle is pure water.[1]
  • Since a hydrogen powered energy economy is more stable than conventional energy economies, this cycle can be incorporated in politically unstable countries.[6]

References

  1. ^ a b c "Schatz Solar Hydrogen Project". schatzlab.org. Retrieved 2011-06-18.
  2. ^ Nakato, Y.; Jia, G.; Ishida, M.; Morisawa, K.; Fujitani, M.; Hinogami, R.; Yae, S. (1998). "Efficient Solar-to-Chemical Conversion by One Chip of n-Type Silicon with Surface Asymmetry". Electrochem. Solid-State Lett. 1 (2). Osaka, Japan: Electrochemical Society: 71–73. doi:10.1149/1.1390640. Retrieved 2011-07-20. {{cite journal}}: Unknown parameter |day= ignored (help); Unknown parameter |month= ignored (help)
  3. ^ Yae, Shinji; Kobayashi, Tsutomu; Abe, Makoto; Nasu, Noriaki; Fukumuro, Naoki; Ogawa, Shunsuke; Yoshida, Norimitsu; Nonomura, Shuichi; Nakato, Yoshihiro; Matsuda, Hitoshi (2007). "Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode". Solar Energy Materials and Solar Cells. 91 (4). Japan: ScienceDirect: 224–229. doi:10.1016/j.solmat.2006.08.010. Retrieved 2011-07-20. {{cite journal}}: Unknown parameter |day= ignored (help); Unknown parameter |month= ignored (help)
  4. ^ "Water splitting to produce solar hydrogen using silicon thin film". spie.org. Retrieved 2011-08-30.
  5. ^ Fujishima, Akira; Honda, Kenichi (1972). "Electrochemical Photolysis of Water at a Semiconductor Electrode". Nature. 238 (1). Japan: Nature Publishing Group: 37–38. doi:10.1038/238037a0. Retrieved 2011-07-20. {{cite journal}}: Unknown parameter |day= ignored (help); Unknown parameter |month= ignored (help)
  6. ^ Turner, John A; Williams, Mark C; Rajeshwar, Rajeshwar (2004). "Hydrogen Economy based on Renewable Energy Sources". CSA Illumina. 13 (3). http://md1.csa.com: 24–30. Retrieved 2011-08-30. {{cite journal}}: External link in |publisher= (help)