List of RNA structure prediction software: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added RNAG to list.
Added RNAstructure to the list of drawing tools.
Line 445: Line 445:
|'''RNA2D3D'''
|'''RNA2D3D'''
|a program for generating, viewing, and comparing 3-dimensional models of RNA || [http://www-lmmb.ncifcrf.gov/~bshapiro/software.html binary] || <ref name="pmid18399701">{{cite journal |author=Martinez HM, Maizel JV, Shapiro BA |title=RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. |journal=J Biomol Struct Dyn |volume=25 |issue=6 |pages=669–83 |year=2008 |pmid=18399701}}</ref>
|a program for generating, viewing, and comparing 3-dimensional models of RNA || [http://www-lmmb.ncifcrf.gov/~bshapiro/software.html binary] || <ref name="pmid18399701">{{cite journal |author=Martinez HM, Maizel JV, Shapiro BA |title=RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. |journal=J Biomol Struct Dyn |volume=25 |issue=6 |pages=669–83 |year=2008 |pmid=18399701}}</ref>
|-
|'''RNAstructure'''
|RNAstructure has a viewer for structures in ct files. It can also compare predicted structures using the circleplot program. Structures can be output as postscript files. || [http://rna.urmc.rochester.edu sourcecode] || <ref name="pmid20230624 ">{{cite journal |author=Reuter JS, Mathews DH |title=RNAstructure: software for RNA secondary structure prediction and analysis. |journal=BMC Bioinformatics |volume=11 |pages=129 |year=2010 |pmid=20230624|doi = 10.1186/1471-2105-11-129 }}</ref>
|-
|-
|'''RNAView/RnamlView'''
|'''RNAView/RnamlView'''

Revision as of 17:14, 26 June 2012

This list of RNA structure prediction software is a compilation of software tools and web portals used for RNA structure prediction.

Single sequence secondary structure prediction

Name Description Knots Links References
CentroidFold Secondary structure prediction based on generalized centroid estimator no sourcecode webserver [1]
CentroidHomfold Secondary structure prediction by using homologous sequence information no sourcecode webserver [2]
CONTRAfold Secondary structure prediction method based on conditional log-linear models (CLLMs), a flexible class of probabilistic models which generalize upon SCFGs by using discriminative training and feature-rich scoring. no sourcecode webserver [3]
CyloFold Secondary structure prediction method based on placement of helices allowing complex pseudoknots. yes webserver [4]
KineFold Folding kinetics of RNA sequences including pseudoknots by including an implementation of the partition function for knots. yes linuxbinary, webserver [5][6]
Mfold MFE (Minimum Free Energy) RNA structure prediction algorithm. no sourcecode, webserver [7]
Pknots A dynamic programming algorithm for optimal RNA pseudoknot prediction using the nearest neighbour energy model. yes sourcecode [8]
PknotsRG A dynamic programming algorithm for the prediction of a restricted class of RNA pseudoknots. yes sourcecode, webserver [9]
RNA123 Secondary structure prediction via thermodynamic-based folding algorithms and novel structure-based sequence alignment specific for RNA. yes webserver
RNAfold MFE RNA structure prediction algorithm. Includes an implementation of the partition function for computing basepair probabilities and circular RNA folding. no sourcecode, webserver

[7][10][11][12][13][14]

RNAshapes MFE RNA structure prediction based on abstract shapes. Shape abstraction retains adjacency and nesting of structural features, but disregards helix lengths, thus reduces the number of suboptimal solutions without losing significant information. Furthermore, shapes represent classes of structures for which probabilities based on Boltzmann-weighted energies can be computed. no source & binaries, webserver [15][16]
RNAstructure A program to predict lowest free energy structures and base pair probabilities for RNA or DNA sequences. Programs are also available to predict Maximum Expected Accuracy structures and these can include pseudoknots. Structure prediction can be constrained using experimental data, including SHAPE, enzymatic cleavage, and chemical modification accessibility. Graphical user interfaces are available for Windows and for Mac OS-X/Linux. Programs are also available for use with Unix-style text interfaces. Additionally, a C++ class library is available. yes source & binaries

[17][18]

Sfold Statistical sampling of all possible structures. The sampling is weighted by partition function probabilities. no webserver [19][20][21][22]
UNAFold The UNAFold software package is an integrated collection of programs that simulate folding, hybridization, and melting pathways for one or two single-stranded nucleic acid sequences. no sourcecode [23]
Crumple Crumple is simple, cleanly written software for producing the full set of possible secondary structures for a single sequence, given optional constraints. no sourcecode [24]
Sliding Windows & Assembly Sliding windows and assembly is a tool chain for folding long series of similar hairpins. no sourcecode [24]

Single sequence tertiary structure prediction

Name Description Knots Links References
BARNACLE A Python library for the probabilistic sampling of RNA structures that are compatible with a given nucleotide sequence and that are RNA-like on a local length scale. yes sourcecode [25]
FARNA Automated de novo prediction of native-like RNA tertiary structures . yes sourcecode [26]
iFoldRNA three-dimensional RNA structure prediction and folding yes webserver [27]
MC-Fold MC-Sym Pipeline Thermodynamics and Nucleotide cyclic motifs for RNA structure prediction algorithm. 2D and 3D structures. yes sourcecode, webserver [28]
NAST Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters ? sourcecode [29]
RNA123 An integrated platform for de novo and homology modeling of RNA 3D structures, where coordinate file input, sequence editing, sequence alignment, structure prediction and analysis features are all accessed from a single intuitive graphical user interface. yes webserver
*Knots: Pseudoknot prediction, <yes|no>.

Comparative methods

The single sequence methods mentioned above have a difficult job detecting a small sample of reasonable secondary structures from a large space of possible structures. A good way to reduce the size of the space is to use evolutionary approaches. Structures that have been conserved by evolution are far more likely to be the functional form. The methods below use this approach.

Name Description Number of sequences Alignment Structure Knots Link References
Carnac Comparative analysis combined with MFE folding. any no yes no sourcecode, webserver [30][31]
CentroidAlifold Common secondary structure prediction based on generalized centroid estimator any yes no no sourcecode webserver [32]
CentroidAlign Fast and accurate multiple aligner for RNA sequences any yes no no sourcecode [33]
CMfinder an expectation maximization algorithm using covariance models for motif description. Uses heuristics for effective motif search, and a Bayesian framework for structure prediction combining folding energy and sequence covariation. yes yes no sourcecode, webserver, website [34]
CONSAN implements a pinned Sankoff algorithm for simultaneous pairwise RNA alignment and consensus structure prediction. 2 yes yes no sourcecode [35]
Dynalign an algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. 2 yes yes no sourcecode [36][37][38]
FoldalignM A multiple RNA structural RNA alignment method, to a large extend based on the PMcomp program. any yes yes no sourcecode [39]
KNetFold Computes a consensus RNA secondary structure from an RNA sequence alignment based on machine learning. any input yes yes linuxbinary, webserver [40]
LARA Produce a global fold and alignment of ncRNA families using integer linear programming and Lagrangian relaxation. any yes yes no sourcecode [41]
LocaRNA LocaRNA is the successor of PMcomp with an improved time complexity. It is a variant of Sankoff's algorithm for simultaneous folding and alignment, which takes as input pre-computed base pair probability matrices from McCaskill's algorithm as produced by RNAfold -p. Thus the method can also be viewed as way to compare base pair probability matrices. any yes yes no sourcecode [42]
MASTR A sampling approach using Markov chain Monte Carlo in a simulated annealing framework, where both structure and alignment is optimized by making small local changes. The score combines the log-likelihood of the alignment, a covariation term and the basepair probabilities. any yes yes no sourcecode [43][44]
Multilign This method uses multiple Dynalign calculations to find a low free energy structure common to any number of sequences. It does not require any sequence identity. any yes yes no sourcecode [45]
Murlet a multiple alignment tool for RNA sequences using iterative alignment based on Sankoff's algorithm with sharply reduced computational time and memory. any yes yes no webserver [46]
MXSCARNA a multiple alignment tool for RNA sequences using progressive alignment based on pairwise structural alignment algorithm of SCARNA. any yes yes no webserver sourcecode [47]
PARTS A method for joint prediction of alignment and common secondary structures of two RNA sequences using a probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities. 2 yes yes no sourcecode [48]
Pfold Folds alignments using a SCFG trained on rRNA alignments. input yes no webserver [49][50]
PETfold Formally integrates both the energy-based and evolution-based approaches in one model to predict the folding of multiple aligned RNA sequences by a maximum expected accuracy scoring. The structural probabilities are calculated by RNAfold and Pfold. any input yes no sourcecode [51]
PMcomp/PMmulti PMcomp is a variant of Sankoff's algorithm for simultaneous folding and alignment, which takes as input pre-computed base pair probability matrices from McCaskill's algorithm as produced by RNAfold -p. Thus the method can also be viewed as way to compare base pair probability matrices. PMmulti is a wrapper program that does progressive multiple alignments by repeatedly calling pmcomp yes yes no sourcecode, webserver [52]
RNAG A Gibbs sampling method to determine a conserved structure and the structural alignment. any yes yes no sourcecode [53]
R-COFFEE uses RNAlpfold to compute the secondary structure of the provided sequences. A modified version of T-Coffee is then used to compute the multiple sequence alignment having the best agreement with the sequences and the structures. R-Coffee can be combined with any existing sequence alignment method. any yes yes no sourcecode, webserver [54][55]
TurboFold This algorithm predicts conserved structures in any number of sequences. It uses probabilistic alignment and partition functions to map conserved pairs between sequences, and then iterates the partition functions to improve structure prediction accuracy any no yes yes sourcecode [56][57]
RNA123 The structure based sequence alignment (SBSA) algorithm within RNA123 utilizes a novel suboptimal version of the Needleman-Wunsch global sequence alignment method that fully accounts for secondary structure in the template and query. It also utilizes two separate substitution matrices that are optimized for RNA helices and single stranded regions. The SBSA algorithm provides >90% accurate sequence alignments even for structures as large as bacterial 23S rRNA (~2800 nts). any yes yes yes webserver
RNAalifold Folds precomputed alignments using a combination of free-energy and a covariation measures. Ships with the Vienna package. any input yes no homepage [10][58]
RNAcast enumerates the near-optimal abstract shape space, and predicts as the consensus an abstract shape common to all sequences, and for each sequence, the thermodynamically best structure which has this abstract shape. any no yes no sourcecode, webserver [59]
RNAforester Compare and align RNA secondary structures via a "forest alignment" approach. any yes input no sourcecode, webserver [60][61]
RNAmine Frequent stem pattern miner from unaligned RNA sequences is a software tool to extract the structural motifs from a set of RNA sequences. any no yes no webserver [62]
RNASampler A probabilistic sampling approach that combines intrasequence base pairing probabilities with intersequence base alignment probabilities. This is used to sample possible stems for each sequence and compare these stems between all pairs of sequences to predict a consensus structure for two sequences. The method is extended to predict the common structure conserved among multiple sequences by using a consistency-based score that incorporates information from all the pairwise structural alignments. any yes yes yes sourcecode [63]
SCARNA Stem Candidate Aligner for RNA (Scarna) is a fast, convenient tool for structural alignment of a pair of RNA sequences. It aligns two RNA sequences and calculates the similarities of them, based on the estimated common secondary structures. It works even for pseudoknotted secondary structures. 2 yes yes no webserver [64]
SimulFold simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. any yes yes yes sourcecode [65]
Stemloc a program for pairwise RNA structural alignment based on probabilistic models of RNA structure known as Pair stochastic context-free grammars. any yes yes no sourcecode [66]
StrAl an alignment tool designed to provide multiple alignments of non-coding RNAs following a fast progressive strategy. It combines the thermodynamic base pairing information derived from RNAfold calculations in the form of base pairing probability vectors with the information of the primary sequence. yes no no sourcecode, webserver [67]
TFold A tool for predicting non-coding RNA secondary structures including pseudoknots. It takes in input an alignment of RNA sequences and returns the predicted secondary structure(s).It combines criteria of stability, conservation and covariation in order to search for stems and pseudoknots. Users can change different parameters values, set (or not) some known stems (if there are) which are taken into account by the system, choose to get several possible structures or only one, search for pseudoknots or not, etc. any yes yes yes webserver [68]
WAR a webserver that makes it possible to simultaneously use a number of state of the art methods for performing multiple alignment and secondary structure prediction for noncoding RNA sequences. yes yes no webserver [69]
Xrate a program for analysis of multiple sequence alignments using phylogenetic grammars, that may be viewed as a flexible generalization of the "Pfold" program. any yes yes no sourcecode [70]
* Number of sequences: <any|num>. * Alignment: predicts an alignment, <input|yes|no>. * Structure: predicts structure, <input|yes|no>. * Knots: pseudoknot prediction, <yes|no>.

Inter molecular interactions: RNA-RNA

Many ncRNAs function by binding to other RNAs. For example, miRNAs regulate protein coding gene expression by binding to 3' UTRs, small nucleolar RNAs guide post-transcriptional modifications by binding to rRNA, U4 spliceosomal RNA and U6 spliceosomal RNA bind to each other forming part of the spliceosome and many small bacterial RNAs regulate gene expression by antisense interactions E.g. GcvB, OxyS and RyhB.

Name Description Intra-molecular structure Comparative Link References
GUUGle A utility for fast determination of RNA-RNA matches with perfect hybridization via A-U, C-G, and G-U base pairing. no no webserver [71]
IntaRNA Efficient target prediction incorporating the accessibility of target sites yes no sourcecode webserver [72][73][74]
NUPACK Computes the full unpseudoknotted partition function of interacting strands in dilute solution. Calculates the concentrations, mfes, and base-pairing probabilities of the ordered complexes below a certain complexity. Also computes the partition function and basepairing of single strands including a class of pseudoknotted structures. Also enables design of ordered complexes. yes no NUPACK [75]
OligoWalk/RNAstructure Predicts bimolecular secondary structures with and without intramolecular structure. Also predicts the hybridization affinity of a short nucleic acid to an RNA target. yes no [1] [76]
piRNA calculates the partition function and thermodynamics of RNA-RNA interactions. It considers all possible joint secondary structure of two interacting nucleic acids that do not contain pseudoknots, interaction pseudoknots, or zigzags. yes no linuxbinary [77]
RNAaliduplex Based upon RNAduplex with bonuses for covarying sites no yes sourcecode [10]
RNAcofold works much like RNAfold, but allows to specify two RNA sequences which are then allowed to form a dimer structure. yes no sourcecode [10][78]
RNAduplex computes optimal and suboptimal secondary structures for hybridization. The calculation is simplified by allowing only inter-molecular base pairs. no no sourcecode [10]
RNAhybrid a tool for finding the minimum free energy hybridisation of a long and a short RNA. no no sourcecode, webserver [79][80]
RNAup calculates the thermodynamics of RNA-RNA interactions. RNA-RNA binding is decomposed into two stages. (1) First the probability that a sequence interval (e.g. a binding site) remains unpaired is computed. (2) Then the binding energy given that the binding site is unpaired is calculated as the optimum over all possible types of bindings. yes no sourcecode [10][81]
*

Inter molecular interactions: MicroRNA:UTR

MicroRNAs regulate protein coding gene expression by binding to 3' UTRs, there are tools specifically designed for predicting these interactions. For an evaluation of target prediction methods on high-throughput experimental data see (Selbach et al., Nature 2008) [82] and (Alexiou et al., Bioinformatics 2009)[83]

Name Description Species Specific Intra-molecular structure Comparative Link References
Diana-microT DIANA-microT 3.0 is an algorithm based on several parameters calculated individually for each microRNA and it combines conserved and non-conserved microRNA recognition elements into a final prediction score. human, mouse no yes webserver [84]
MicroTar An animal miRNA target prediction tool based on miRNA-target complementarity and thermodynamic data. no no no sourcecode [85]
miTarget microRNA target gene prediction using a support vector machine. no no no webserver [86]
PicTar Combinatorial microRNA target predictions. 8 vertebrates no yes predictions [87]
PITA Incorporates the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. no yes no executable, webserver, predictions [88]
RNA22 The first link (predictions) provides RNA22 predictions for all protein coding transcripts in human, mouse, roundworm, and fruit fly. It allows you to visualize the predictions within a cDNA map and also find transcripts where multiple miR's of interest target. The second web-site link (custom) first finds putative microRNA binding sites in the sequence of interest, then identifies the targeted microRNA. no no no predictions custom [89]
RNAhybrid a tool for finding the minimum free energy hybridisation of a long and a short RNA. no no no sourcecode, webserver [79][80]
Sylamer Sylamer is a method for finding significantly over or under-represented words in sequences according to a sorted gene list. Typically it is used to find significant enrichment or depletion of microRNA or siRNA seed sequences from microarray expression data. no no no sourcecode webserver [90][91]
TAREF TAREF stands for TARget REFiner. It predicts microRNA targets on the basis of multiple feature information derived from the flanking regions of the predicted target sites where traditional structure prediction approach may not be successful to assess the openness. It also provides an option to use encoded pattern to refine filtering. Yes no no server/sourcecode [92]
p-TAREF p-TAREF stands for plant TARget REFiner. It identifies plant microRNA targets on the basis of multiple feature information derived from the flanking regions of the predicted target sites where traditional structure prediction approach may not be successful to assess the openness. It also provides an option to use encoded pattern to refine filtering. It first time employed power of machine learning approach with scoring scheme through Support Vector Regression(SVR) while considering structural and alignment aspects of targeting in plants with plant specific models. p-TAREF has been implemented in concurrent architecture in server as well as standalone form, making it one of the very few available target identification tools able to run concurrently on simple desktops while performing huge transcriptome level analysis accurately and fast. Besides this, it also provides an option to experimentally validate the predicted targets, on the spot, using expression data, which has been integrated in its back-end, to draw confidence on prediction along with SVR score.p-TAREF performance benchmarking has been done extensively through different tests and compared with other plant miRNA target identification tools. p-TAREF was found better performing. Yes no no server/standalone
TargetScan Predicts biological targets of miRNAs by searching for the presence of conserved 8mer and 7mer sites that match the seed region of each miRNA. Predictions are ranked using site number, site type, and site context, which includes factors that influence target-site accessibility. vertebrates, flies, nematodes evaluated indirectly yes sourcecode, webserver [93][94][95][96]
*

ncRNA gene prediction software

Name Description Number of sequences Alignment Structure Link References
Alifoldz Assessing a multiple sequence alignment for the existence of an unusual stable and conserved RNA secondary structure. any input yes sourcecode [97]
EvoFold a comparative method for identifying functional RNA structures in multiple-sequence alignments. It is based on a probabilistic model-construction called a phylo-SCFG and exploits the characteristic differences of the substitution process in stem-pairing and unpaired regions to make its predictions. any input yes linuxbinary [98]
MSARi heuristic search for statistically significant conservation of RNA secondary structure in deep multiple sequence alignments. any input yes sourcecode [99]
QRNA This is the code from Elena Rivas that accompanies a submitted manuscript "Noncoding RNA gene detection using camparative sequence analysis". QRNA uses comparative genome sequence analysis to detect conserved RNA secondary structures, including both ncRNA genes and cis-regulatory RNA structures. 2 input yes sourcecode [100][101]
RNAz program for predicting structurally conserved and thermodynamic stable RNA secondary structures in multiple sequence alignments. It can be used in genome wide screens to detect functional RNA structures, as found in noncoding RNAs and cis-acting regulatory elements of mRNAs. any input yes sourcecode, webserver RNAz 2 [102][103][104]
Xrate a program for analysis of multiple sequence alignments using phylogenetic grammars, that may be viewed as a flexible generalization of the "Evofold" program. any yes yes sourcecode [70]
* Number of sequences: <any|num>. * Alignment: predicts an alignment, <input|yes|no>. * Structure: predicts structure, <input|yes|no>.

Family specific gene prediction software

Name Description Family Link References
ARAGORN ARAGORN detects tRNA and tmRNA in nucleotide sequences. tRNA tmRNA webserver source [105]
miRNAminer Given a search query, candidate homologs are identified using BLAST search and then tested for their known miRNA properties, such as secondary structure, energy, alignment and conservation, in order to assess their fidelity. MicroRNA webserver [106]
RISCbinder Prediction of guide strand of microRNAs. Mature miRNA webserver [107]
RNAmicro A SVM-based approach that, in conjunction with a non-stringent filter for consensus secondary structures, is capable of recognizing microRNA precursors in multiple sequence alignments. MicroRNA homepage [108]
RNAmmer RNAmmer uses HMMER to annotate rRNA genes in genome sequences. Profiles were built using alignments from the European ribosomal RNA database[109] and the 5S Ribosomal RNA Database.[110] rRNA webserver source [111]
SnoReport Uses a combination of RNA secondary structure prediction and machine learning that is designed to recognize the two major classes of snoRNAs, box C/D and box H/ACA snoRNAs, among ncRNA candidate sequences. snoRNA sourcecode [112]
SnoScan Search for C/D box methylation guide snoRNA genes in a genomic sequence. C/D box snoRNA sourcecode, webserver [113][114]
snoSeeker snoSeeker includes two snoRNA-searching programs, CDseeker and ACAseeker, specific to the detection of C/D snoRNAs and H/ACA snoRNAs, respectively. snoSeeker has been used to scan four human–mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. snoRNA webserver,stand-alone [115]
tRNAscan-SE a program for the detection of transfer RNA genes in genomic sequence. tRNA sourcecode, webserver [114][116]
.

RNA homology search software

Name Description Link References
ERPIN "Easy RNA Profile IdentificatioN" is an RNA motif search program reads a sequence alignement and secondary structure, and automatically infers a statistical "secondary structure profile" (SSP). An original Dynamic Programming algorithm then matches this SSP onto any target database, finding solutions and their associated scores. sourcecode webserver [117][118][119]
Infernal "INFERence of RNA ALignment" is for searching DNA sequence databases for RNA structure and sequence similarities. It is an implementation of a special case of profile stochastic context-free grammars called covariance models (CMs). sourcecode [120][121][122]
PHMMTS "pair hidden Markov models on tree structures" is an extension of pair hidden Markov models defined on alignments of trees. sourcecode, webserver [123]
RaveNnA A slow and rigorous or fast and heuristic sequence-based filter for covariance models. sourcecode [124][125]
RSEARCH Takes a single RNA sequence with its secondary structure and utilizes a local alignment algorithm to search a database for homologous RNAs. sourcecode [126]
Structator Ultra fast software for searching for RNA structural motifs employing an innovative index-based bidirectional matching algorithm combined with a new fast fragment chaining strategy. sourcecode [127]

Benchmarks

Name Description Structure Alignment Phylogeny Links References
BRalibase I A comprehensive comparison of comparative RNA structure prediction approaches yes no no data [128]
BRalibase II A benchmark of multiple sequence alignment programs upon structural RNAs no yes no data [129]
BRalibase 2.1 A benchmark of multiple sequence alignment programs upon structural RNAs no yes no data [130]
BRalibase III A critical assessment of the performance of homology search methods on noncoding RNA no yes no data [131]
CompaRNA An independent comparison of single-sequence RNA secondary structure prediction programs yes no no CompaRNA
* Alignment: benchmarks alignment tools <yes|no>. * Structure: benchmarks structure prediction tools <yes|no>.

Alignment viewers/editors

Name Description Alignment Structure Link References
4sale A tool for Synchronous RNA Sequence and Secondary Structure Alignment and Editing yes yes sourcecode [132]
Colorstock, SScolor, Raton Colorstock, a command-line script using ANSI terminal color; SScolor, a Perl script that generates static HTML pages; and Raton, an AJAX web application generating dynamic HTML. Each tool can be used to color RNA alignments by secondary structure and to visually highlight compensatory mutations in stems. yes yes sourcecode [133]
Integrated Genome Browser (IGB) a multiple alignment viewer written in Java. yes no sourcecode [134]
Jalview a multiple alignment editor written in Java. yes no sourcecode [135][136]
RALEE a major mode for the Emacs text editor. It provides functionality to aid the viewing and editing of multiple sequence alignments of structured RNAs. yes yes sourcecode [137]
SARSE A graphical sequence editor for working with structural alignments of RNA. yes yes sourcecode [138]
* Alignment: view and edit an alignment, <yes|no>. * Structure: view and edit structure, <yes|no>

Inverse Folding/RNA design

Name Description Link References
ETeRNA An RNA folding game that challenges players to come up with sequences that fold into a target RNA structure. The best sequences for a given puzzle are synthesized and their structures are probed through chemical mapping. The sequences are then scored by the data's agreement to the target structure and feedback is provided to the players. home page --
NUPACK Although NUPACK can be used to get useful statistics and properties of an RNA's structure as mentioned above, it's main goal is design of new sequences that fold into a desired structure. home page [75]
RNAInverse The ViennaRNA package provides RNAInverse, an algorithm for designing sequences with desired structure. help page [139]

Secondary structure viewers/editors

Name Description Link References
PseudoViewer Automatically visualizing RNA pseudoknot structures as planar graphs. webapp/binary [140][141][142][143]
RNA Movies browse sequential paths through RNA secondary structure landscapes sourcecode [144][145]
RNA2D3D a program for generating, viewing, and comparing 3-dimensional models of RNA binary [146]
RNAstructure RNAstructure has a viewer for structures in ct files. It can also compare predicted structures using the circleplot program. Structures can be output as postscript files. sourcecode [147]
RNAView/RnamlView Use RNAView to automatically identify and classify the types of base pairs that are formed in nucleic acid structures. Use RnamlView to arrange RNA structures. sourcecode [148]
VARNA a tool for the automated drawing, visualization and annotation of the secondary structure of RNA, designed as a companion software for web servers and databases sourcecode [149]

See also

References

  1. ^ Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, Kiyoshi Asai (2009). "Predictions of RNA secondary structure using generalized centroid estimators". Bioinformatics. 25 (4): 465–473. doi:10.1093/bioinformatics/btn601. PMID 19095700.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, Kiyoshi Asai (2009). "Predictions of RNA secondary structure by combining homologous sequence information". Bioinformatics. 25 (12): i330–i3388. doi:10.1093/bioinformatics/btp228. PMID 19478007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Do CB, Woods DA, Batzoglou S (2006). "CONTRAfold: RNA secondary structure prediction without physics-based models". Bioinformatics. 22 (14): e90–8. doi:10.1093/bioinformatics/btl246. PMID 16873527.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Bindewald E, Kluth T, Shapiro BA (2010). "CyloFold: secondary structure prediction including pseudoknots". Nucleic Acids Research. Suppl (W): 368–72. doi:10.1093/nar/gkq432. PMC 2896150. PMID 20501603.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Xayaphoummine A, Bucher T, Isambert H (2005). "Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots". Nucleic Acids Res. 33 (Web Server issue): W605–10. doi:10.1093/nar/gki447. PMC 1160208. PMID 15980546.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Xayaphoummine A, Bucher T, Thalmann F, Isambert H (2003). "Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations". Proc. Natl. Acad. Sci. U.S.A. 100 (26): 15310–5. arXiv:physics/0309117. Bibcode:2003PNAS..10015310X. doi:10.1073/pnas.2536430100. PMC 307563. PMID 14676318.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b Zuker M, Stiegler P (1981). "Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information". Nucleic Acids Res. 9 (1): 133–48. doi:10.1093/nar/9.1.133. PMC 326673. PMID 6163133.
  8. ^ Rivas E, Eddy SR (1999). "A dynamic programming algorithm for RNA structure prediction including pseudoknots". J. Mol. Biol. 285 (5): 2053–68. doi:10.1006/jmbi.1998.2436. PMID 9925784.
  9. ^ Reeder J, Steffen P, Giegerich R (2007). "pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows". Nucleic Acids Res. 35 (Web Server issue): W320–4. doi:10.1093/nar/gkm258. PMC 1933184. PMID 17478505.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b c d e f I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994). "Fast Folding and Comparison of RNA Secondary Structures". Monatshefte f. Chemie. 125 (2): 167–188. doi:10.1007/BF00818163.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ McCaskill JS (1990). "The equilibrium partition function and base pair binding probabilities for RNA secondary structure". Biopolymers. 29 (6–7): 1105–19. doi:10.1002/bip.360290621. PMID 1695107.
  12. ^ Hofacker IL, Stadler PF (2006). "Memory efficient folding algorithms for circular RNA secondary structures". Bioinformatics. 22 (10): 1172–6. doi:10.1093/bioinformatics/btl023. PMID 16452114.
  13. ^ Bompfünewerer AF, Backofen R, Bernhart SH; et al. (2008). "Variations on RNA folding and alignment: lessons from Benasque". J Math Biol. 56 (1–2): 129–144. doi:10.1007/s00285-007-0107-5. PMID 17611759. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  14. ^ Douglas Adams (1979). The Hitchhiker's Guide to the Galaxy. London: Pan Books. ISBN 0-330-25864-8.
  15. ^ R. Giegerich, B.Voß, M. Rehmsmeier (2004). "Abstract shapes of RNA". Nucleic Acids Res. 32 (16): 4843–4851. doi:10.1093/nar/gkh779. PMC 519098. PMID 15371549.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ B. Voß, R. Giegerich, M. Rehmsmeier (2006). "Complete probabilistic analysis of RNA shapes". BMC Biology. 4: 5. doi:10.1186/1741-7007-4-5. PMC 1479382. PMID 16480488.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  17. ^ D.H. Mathews, M.D. Disney, J. L. Childs, S.J. Schroeder, M. Zuker, D.H. Turner (2004). "Incorporating chemical modification constraints into a dynamic programming algorothm for prediction of RNA secondary structure". Proceedings of the National Academy of Sciences, USA. 101 (19): 7287–7292. Bibcode:2004PNAS..101.7287M. doi:10.1073/pnas.0401799101. PMC 409911. PMID 15123812.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ D.H. Mathews (2004). "Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization". RNA. 10 (8): 1178–1190. doi:10.1261/rna.7650904. PMC 1370608. PMID 15272118.
  19. ^ Ding Y, Lawrence CE (2003). "A statistical sampling algorithm for RNA secondary structure prediction". Nucleic Acids Res. 31 (24): 7280–301. doi:10.1093/nar/gkg938. PMC 297010. PMID 14654704.
  20. ^ Ding Y, Chan CY, Lawrence CE (2004). "Sfold web server for statistical folding and rational design of nucleic acids". Nucleic Acids Res. 32 (Web Server issue): W135–41. doi:10.1093/nar/gkh449. PMC 441587. PMID 15215366.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Ding Y, Chan CY, Lawrence CE (2005). "RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble". RNA. 11 (8): 1157–66. doi:10.1261/rna.2500605. PMC 1370799. PMID 16043502.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ Chan CY, Lawrence CE, Ding Y (2005). "Structure clustering features on the Sfold Web server". Bioinformatics. 21 (20): 3926–8. doi:10.1093/bioinformatics/bti632. PMID 16109749.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Markham NR, Zuker M (2008). "UNAFold: software for nucleic acid folding and hybridization". Methods Mol Biol. 453: 3–31. doi:10.1007/978-1-60327-429-6_1. PMID 18712296.
  24. ^ a b Schroeder S, Bleckley S, Stone JW (2011). "Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints". Biophysical Journal. 101 (1): 167–175. doi:10.1016/j.bpj.2011.05.053. PMID 21723827.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J, Hamelryck T (2009). Gardner, Paul (ed.). "A probabilistic model of RNA conformational space". PLoS Comput Biol. 5 (6): e1000406. doi:10.1371/journal.pcbi.1000406. PMC 2691987. PMID 19543381.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  26. ^ Das R, Baker D (2007). "Automated de novo prediction of native-like RNA tertiary structures". Proc. Natl. Acad. Sci. U.S.A. 104 (37): 14664–9. Bibcode:2007PNAS..10414664D. doi:10.1073/pnas.0703836104. PMC 1955458. PMID 17726102. {{cite journal}}: Unknown parameter |month= ignored (help)
  27. ^ Sharma S, Ding F, Dokholyan NV (2008). "iFoldRNA: three-dimensional RNA structure prediction and folding". Bioinformatics. 24 (17): 1951–2. doi:10.1093/bioinformatics/btn328. PMC 2559968. PMID 18579566. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  28. ^ Parisien M, Major F (2008). "The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data". Nature. 452 (1): 51–55. Bibcode:2008Natur.452...51P. doi:10.1038/nature06684. PMID 18322526.
  29. ^ Jonikas MA, Radmer RJ, Laederach A; et al. (2009). "Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters". RNA. 15 (2): 189–99. doi:10.1261/rna.1270809. PMC 2648710. PMID 19144906. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  30. ^ Perriquet O, Touzet H, Dauchet M. (2003). "Finding the common structure shared by two homologous RNAs". Bioinformatics. 19 (1): 108–16. doi:10.1093/bioinformatics/19.1.108. PMID 12499300.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Touzet H, Perriquet O. (2004 Jul 1;). "CARNAC: folding families of related RNAs". Nucleic Acids Res. 32. (Web Server issue) (Web Server issue): W142–5. doi:10.1093/nar/gkh415. PMC 441553. PMID 15215367. {{cite journal}}: Check date values in: |year= (help)CS1 maint: extra punctuation (link)
  32. ^ Michiaki Hamada, Kengo Sato, Kiyoshi Asai (2011). "Improving the accuracy of predicting secondary structure for aligned RNA sequences". Nucleic Acids Res. 39 (2): 393–402. doi:10.1093/nar/gkq792. PMID 20843778.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Michiaki Hamada, Kengo Sato, Hisanori Kiryu, Toutai Mituyama, Kiyoshi Asai (2009). "CentroidAlign: fast and accurate aligner for structured RNAs by maximizing expected sum-of-pairs score". Bioinformatics. 25 (24): 3236–43. doi:10.1093/bioinformatics/btp580. PMID 19808876.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Yao Z, Weinberg Z, Ruzzo WL (2006). "CMfinder--a covariance model based RNA motif finding algorithm". Bioinformatics. 22 (4): 445–52. doi:10.1093/bioinformatics/btk008. PMID 16357030.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Dowell RD, Eddy SR (2006). "Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints". BMC Bioinformatics. 7: 400. doi:10.1186/1471-2105-7-400. PMC 1579236. PMID 16952317.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  36. ^ Mathews DH, Turner DH (2002). "Dynalign: an algorithm for finding the secondary structure common to two RNA sequences". J. Mol. Biol. 317 (2): 191–203. doi:10.1006/jmbi.2001.5351. PMID 11902836.
  37. ^ Mathews DH (2005). "Predicting a set of minimal free energy RNA secondary structures common to two sequences". Bioinformatics. 21 (10): 2246–53. doi:10.1093/bioinformatics/bti349. PMID 15731207.
  38. ^ Harmanci AO, Sharma G, Mathews DH (2007). "Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign". BMC Bioinformatics. 8: 130. doi:10.1186/1471-2105-8-130. PMC 1868766. PMID 17445273.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  39. ^ Torarinsson E, Havgaard JH, Gorodkin J (2007). "Multiple structural alignment and clustering of RNA sequences". Bioinformatics. 23 (8): 926–32. doi:10.1093/bioinformatics/btm049. PMID 17324941.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Bindewald E, Shapiro BA (2006). "RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers". RNA. 12 (3): 342–52. doi:10.1261/rna.2164906. PMC 1383574. PMID 16495232.
  41. ^ Bauer M, Klau GW, Reinert K. (2007). "Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization". BMC Bioinformatics. 8: 271. doi:10.1186/1471-2105-8-271. PMC 1955456. PMID 17662141.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  42. ^ Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007). "Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering". PLoS Comput Biol. 3 (4): e65. Bibcode:2007PLSCB...3...65W. doi:10.1371/journal.pcbi.0030065. PMC 1851984. PMID 17432929.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  43. ^ Lindgreen S, Gardner PP, Krogh A (2006). "Measuring covariation in RNA alignments: physical realism improves information measures". Bioinformatics. 22 (24): 2988–95. doi:10.1093/bioinformatics/btl514. PMID 17038338.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ Lindgreen S, Gardner PP, Krogh A (2007). "MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing". Bioinformatics. 23 (24): 3304–11. doi:10.1093/bioinformatics/btm525. PMID 18006551.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Xu Z, Mathews DH (2011). "Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences". Bioinformatics. 27 (5): 626–632. doi:10.1093/bioinformatics/btq726. PMID 21193521.
  46. ^ Kiryu H, Tabei Y, Kin T, Asai K (2007). "Murlet: a practical multiple alignment tool for structural RNA sequences". Bioinformatics. 23 (13): 1588–98. doi:10.1093/bioinformatics/btm146. PMID 17459961.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Tabei Y, Kiryu H, Kin T, Asai K (2008). "A fast structural multiple alignment method for long RNA sequences". BMC Bioinformatics. 33.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Harmanci AO, Sharma G, Mathews DH (2008). "PARTS: probabilistic alignment for RNA joinT secondary structure prediction". Nucleic Acids Res. 36 (7): 2406–17. doi:10.1093/nar/gkn043. PMC 2367733. PMID 18304945.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ Knudsen B, Hein J (1999). "RNA secondary structure prediction using stochastic context-free grammars and evolutionary history". Bioinformatics. 15 (6): 446–54. doi:10.1093/bioinformatics/15.6.446. PMID 10383470.
  50. ^ Knudsen B, Hein J (2003). "Pfold: RNA secondary structure prediction using stochastic context-free grammars". Nucleic Acids Res. 31 (13): 3423–8. doi:10.1093/nar/gkg614. PMC 169020. PMID 12824339.
  51. ^ Seemann S E, Gorodkin J, Backofen R (2008). "Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments". Nucleic Acids Res. 36 (20): 6355–62. doi:10.1093/nar/gkn544. PMC 2582601. PMID 18836192.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Hofacker IL, Bernhart SH, Stadler PF (2004). "Alignment of RNA base pairing probability matrices". Bioinformatics. 20 (14): 2222–7. doi:10.1093/bioinformatics/bth229. PMID 15073017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Wei D, Alpert LV, Lawrence CE (2011). "RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequence". Bioinformatics. 27 (18): 2486–2493. doi:10.1093/bioinformatics/btr421. PMID 21788211.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. ^ Wilm A, Higgins DG, Notredame C (2008). "R-Coffee: a method for multiple alignment of non-coding RNA". Nucleic Acids Res. 36 (9): e52. doi:10.1093/nar/gkn174. PMC 2396437. PMID 18420654. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. ^ Moretti S, Wilm A, Higgins DG, Xenarios I, Notredame C (2008). "R-Coffee: a web server for accurately aligning noncoding RNA sequences". Nucleic Acids Res. 36 (Web Server issue): W10–3. doi:10.1093/nar/gkn278. PMC 2447777. PMID 18483080. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  56. ^ Harmanci AO, Sharma G, Mathews DH (2011). "TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequence". BMC Bioinformatics. 12: 108. doi:10.1186/1471-2105-12-108. PMID 21507242.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  57. ^ Seetin MG, Mathews DH (2012). "TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots". Bioinformatics. 28 (6): 792–798. doi:10.1093/bioinformatics/bts044. PMID 22285566.
  58. ^ Hofacker IL, Fekete M, Stadler PF (2002). "Secondary structure prediction for aligned RNA sequences". J. Mol. Biol. 319 (5): 1059–66. doi:10.1016/S0022-2836(02)00308-X. PMID 12079347.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. ^ Reeder J, Giegerich R (2005). "Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction". Bioinformatics. 21 (17): 3516–23. doi:10.1093/bioinformatics/bti577. PMID 16020472.
  60. ^ Höchsmann M, Töller T, Giegerich R, Kurtz S (2003). "Local similarity in RNA secondary structures". Proc IEEE Comput Soc Bioinform Conf. 2: 159–68. PMID 16452790.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Höchsmann M, Voss B, Giegerich R (2004). "Pure multiple RNA secondary structure alignments: a progressive profile approach". IEEE/ACM Trans Comput Biol Bioinform. 1 (1): 53–62. doi:10.1109/TCBB.2004.11. PMID 17048408.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ Hamada M, Tsuda K, Kudo T, Kin T, Asai K (2006). "Mining frequent stem patterns from unaligned RNA sequences". Bioinformatics. 22 (20): 2480–7. doi:10.1093/bioinformatics/btl431. PMID 16908501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Xu X, Ji Y, Stormo GD (2007). "RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment". Bioinformatics. 23 (15): 1883–91. doi:10.1093/bioinformatics/btm272. PMID 17537756.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. ^ Tabei Y, Tsuda K, Kin T, Asai K (2006). "SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments". Bioinformatics. 22 (14): 1723–9. doi:10.1093/bioinformatics/btl177. PMID 16690634.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  65. ^ Meyer IM, Miklós I (2007). "SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework". PLoS Comput. Biol. 3 (8): e149. Bibcode:2007PLSCB...3..149M. doi:10.1371/journal.pcbi.0030149. PMC 1941756. PMID 17696604.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  66. ^ Holmes I (2005). "Accelerated probabilistic inference of RNA structure evolution". BMC Bioinformatics. 6: 73. doi:10.1186/1471-2105-6-73. PMC 1090553. PMID 15790387.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. ^ Dalli D, Wilm A, Mainz I, Steger G (2006). "STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time". Bioinformatics. 22 (13): 1593–9. doi:10.1093/bioinformatics/btl142. PMID 16613908.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. ^ Engelen S, Tahi F (2010). "Tfold: efficient in silico prediction of non-coding RNA secondary structures". Nucleic Acids Res. 7 (38): 2453–66. doi:10.1093/nar/gkp1067. PMC 2853104. PMID 20047957.
  69. ^ Torarinsson E, Lindgreen S (2008). "WAR: Webserver for aligning structural RNAs". Nucleic Acids Res. 36 (Web Server issue): W79–84. doi:10.1093/nar/gkn275. PMC 2447782. PMID 18492721.
  70. ^ a b Klosterman P; Uzilov, AV; Bendaña, YR; Bradley, RK; Chao, S; Kosiol, C; Goldman, N; Holmes, I (2006). "XRate: a fast prototyping, training and annotation tool for phylo-grammars". BMC Bioinformatics. 7: 428. doi:10.1186/1471-2105-7-428. PMC 1622757. PMID 17018148.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  71. ^ Gerlach W, Giegerich R (2006). "GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing". Bioinformatics. 22 (6): 762–764. doi:10.1093/bioinformatics/btk041. PMID 16403789.
  72. ^ Busch A, Richter AS, Backofen R (2008). "IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions". Bioinformatics. 24 (24): 2849–56. doi:10.1093/bioinformatics/btn544. PMC 2639303. PMID 18940824.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ Richter AS, Schleberger C, Backofen R, Steglich C (2010). "Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1". Bioinformatics. 26 (1): 1–5. doi:10.1093/bioinformatics/btp609. PMC 2796815. PMID 19850757.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. ^ Smith C, Heyne S, Richter AS, Will S, Backofen R (2010). "Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA". Nucleic Acids Res. 38. Suppl (Web Server): W373–7. doi:10.1093/nar/gkq316. PMC 2896085. PMID 20444875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. ^ a b R.M. Dirks, J.S. Bois, J.M. Schaeffer, E. Winfree, N.A. Pierce (2007). "Thermodynamic Analysis of Interacting Nucleic Acid Strands". SIAM Review. 49 (1): 65–88. Bibcode:2007SIAMR..49...65D. doi:10.1137/060651100.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. ^ D.H. Mathews, M.E. Burkard, S.M. Freier, D.H. Turner (1999). "Predicting Oligonucleotide Affinity to RNA Targets". RNA. 5 (11): 1458–1469. doi:10.1017/S1355838299991148. PMC 1369867. PMID 10580474.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. ^ H. Chitsaz, R. Salari, S.C. Sahinalp, R. Backofen (2009). "A Partition Function Algorithm for Interacting Nucleic Acid Strands". Bioinformatics. 25 (12). doi:10.1093/bioinformatics/btp212. PMC 2687966. PMID 19478011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  78. ^ Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006). "Partition function and base pairing probabilities of RNA heterodimers". Algorithms Mol Biol. 1 (1): 3. doi:10.1186/1748-7188-1-3. PMC 1459172. PMID 16722605.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  79. ^ a b Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004). "Fast and effective prediction of microRNA/target duplexes". RNA. 10 (10): 1507–17. doi:10.1261/rna.5248604. PMC 1370637. PMID 15383676.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. ^ a b Krüger J, Rehmsmeier M (2006). "RNAhybrid: microRNA target prediction easy, fast and flexible". Nucleic Acids Res. 34 (Web Server issue): W451–4. doi:10.1093/nar/gkl243. PMC 1538877. PMID 16845047.
  81. ^ Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006). "Thermodynamics of RNA-RNA binding". Bioinformatics. 22 (10): 1177–82. doi:10.1093/bioinformatics/btl024. PMID 16446276.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. ^ Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). "Widespread changes in protein synthesis induced by microRNAs". Nature. 455 (7209): 44–5. Bibcode:2008Natur.455...58S. doi:10.1038/nature07228. PMID 18668040.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  83. ^ Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009). "Lost in translation: an assessment and perspective for computational microRNA target identification". Bioinformatics. 25 (23): 3049–55. doi:10.1093/bioinformatics/btp565. PMID 19789267.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  84. ^ Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009). "Accurate microRNA target prediction correlates with protein repression levels". BMC Bioinformatics. 10: 295. doi:10.1186/1471-2105-10-295. PMC 2752464. PMID 19765283.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  85. ^ Thadani R, Tammi MT (2006). "MicroTar: predicting microRNA targets from RNA duplexes". BMC Bioinformatics. 7. Suppl 5: S20. doi:10.1186/1471-2105-7-S5-S20. PMC 1764477. PMID 17254305.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  86. ^ Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006). "miTarget: microRNA target gene prediction using a support vector machine". BMC Bioinformatics. 7: 411. doi:10.1186/1471-2105-7-411. PMC 1594580. PMID 16978421.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  87. ^ Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005). "Combinatorial microRNA target predictions". Nat Genet. 37 (5): 495–500. doi:10.1038/ng1536. PMID 15806104.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  88. ^ Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007). "The role of site accessibility in microRNA target recognition". Nat Genet. 39 (10): 1278–84. doi:10.1038/ng2135. PMID 17893677.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  89. ^ Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006). "A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes". Cell. 126 (6): 1203–17. doi:10.1016/j.cell.2006.07.031. PMID 16990141.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  90. ^ van Dongen S, Abreu-Goodger C, Enright AJ (2008). "Detecting microRNA binding and siRNA off-target effects from expression data". Nat Methods. 5 (12): 1023–5. doi:10.1038/nmeth.1267. PMC 2635553. PMID 18978784.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  91. ^ Bartonicek N, Enright AJ (2010). "SylArray: A web-server for automated detection of miRNA effects from expression data". Bioinformatics. 26 (22): 2900–1. doi:10.1093/bioinformatics/btq545. PMID 20871108.
  92. ^ R. Heikham and R. Shankar (2010). "Flanking region sequence information to refine microRNA target predictions". Journal of Biosciences. 35 (1): 105–18. doi:10.1007/s12038-010-0013-7. PMID 20413915.
  93. ^ Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003). "Prediction of mammalian microRNA targets". Cell. 115 (7): 787–98. doi:10.1016/S0092-8674(03)01018-3. PMID 14697198.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  94. ^ Lewis BP, Burge CB, Bartel DP (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell. 120 (1): 15–20. doi:10.1016/j.cell.2004.12.035. PMID 15652477.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  95. ^ Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007). "MicroRNA targeting specificity in mammals: determinants beyond seed pairing". Mol Cell. 27 (1): 91–105. doi:10.1016/j.molcel.2007.06.017. PMID 17612493.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  96. ^ Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011). "Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs". Nat Struct Mol Biol. 18 (10): 1139–1146. doi:10.1038/nsmb.2115. PMID 21909094.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  97. ^ Washietl S, Hofacker IL (2004). "Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics". J. Mol. Biol. 342 (1): 19–30. doi:10.1016/j.jmb.2004.07.018. PMID 15313604.
  98. ^ Pedersen JS, Bejerano G, Siepel A; et al. (2006). "Identification and classification of conserved RNA secondary structures in the human genome". PLoS Comput. Biol. 2 (4): e33. Bibcode:2006PLSCB...2...33P. doi:10.1371/journal.pcbi.0020033. PMC 1440920. PMID 16628248. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  99. ^ Coventry A, Kleitman DJ, Berger BA (2004). "MSARI: Multiple sequence alignments for statistical detection of RNA secondary structure". PNAS. 101 (33): 12102–12107. Bibcode:2004PNAS..10112102C. doi:10.1073/pnas.0404193101. PMC 514400. PMID 15304649.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  100. ^ Rivas E, Eddy SR (2001). "Noncoding RNA gene detection using comparative sequence analysis". BMC Bioinformatics. 2: 8. doi:10.1186/1471-2105-2-8. PMC 64605. PMID 11801179.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  101. ^ Rivas E, Klein RJ, Jones TA, Eddy SR (2001). "Computational identification of noncoding RNAs in E. coli by comparative genomics". Curr. Biol. 11 (17): 1369–73. doi:10.1016/S0960-9822(01)00401-8. PMID 11553332.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  102. ^ Washietl S, Hofacker IL, Stadler PF (2005). "Fast and reliable prediction of noncoding RNAs". Proc. Natl. Acad. Sci. U.S.A. 102 (7): 2454–9. Bibcode:2005PNAS..102.2454W. doi:10.1073/pnas.0409169102. PMC 548974. PMID 15665081.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  103. ^ Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007). "The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures". Nucleic Acids Res. 35 (Web Server issue): W335–8. doi:10.1093/nar/gkm222. PMC 1933143. PMID 17452347.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  104. ^ Washietl S (2007). "Prediction of Structural Noncoding RNAs With RNAz". Methods Mol. Biol. 395: 503–26. doi:10.1007/978-1-59745-514-5_32. PMID 17993695.
  105. ^ Laslett D, Canback B (2004). "ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences". Nucl. Acids Res. 32 (1): 39. doi:10.1093/nar/gkh152. PMC 373265. PMID 14704338.
  106. ^ Artzi S, Kiezun A, Shomron N (2008). "miRNAminer: a tool for homologous microRNA gene search". BMC Bioinformatics. 9: 39. doi:10.1186/1471-2105-9-39. PMC 2258288. PMID 18215311.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  107. ^ Ahmed F, Ansari HR and Raghava GPS (2009). "Prediction of guide strand of microRNAs from its sequence and secondary structure". BMC Bioinformatics.
  108. ^ Hertel J, Stadler PF (2006). "Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data". Bioinformatics. 22 (14): e197–202. doi:10.1093/bioinformatics/btl257. PMID 16873472.
  109. ^ Wuyts J, Perrière G, Van De Peer Y (2004). "The European ribosomal RNA database". Nucleic Acids Res. 32 (Database issue): D101–3. doi:10.1093/nar/gkh065. PMC 308799. PMID 14681368.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  110. ^ Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002). "5S Ribosomal RNA Database". Nucleic Acids Res. 30 (1): 176–8. doi:10.1093/nar/30.1.176. PMC 99124. PMID 11752286.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  111. ^ Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007). "RNAmmer: consistent and rapid annotation of ribosomal RNA genes". Nucleic Acids Res. 35 (9): 3100–8. doi:10.1093/nar/gkm160. PMC 1888812. PMID 17452365.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  112. ^ Hertel J, Hofacker IL, Stadler PF (2008). "SnoReport: computational identification of snoRNAs with unknown targets". Bioinformatics. 24 (2): 158–64. doi:10.1093/bioinformatics/btm464. PMID 17895272.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  113. ^ Lowe TM, Eddy SR (1999). "A computational screen for methylation guide snoRNAs in yeast". Science. 283 (5405): 1168–71. Bibcode:1999Sci...283.1168L. doi:10.1126/science.283.5405.1168. PMID 10024243.
  114. ^ a b Schattner P, Brooks AN, Lowe TM (2005). "The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs". Nucleic Acids Res. 33 (Web Server issue): W686–9. doi:10.1093/nar/gki366. PMC 1160127. PMID 15980563.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  115. ^ Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S, Chen YQ, Qu LH. (2006). "snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome". Nucleic Acids Res. 34 (18): 5112–5123. doi:10.1093/nar/gkl672. PMC 1636440. PMID 16990247.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  116. ^ Lowe TM, Eddy SR (1997). "tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence". Nucleic Acids Res. 25 (5): 955–64. doi:10.1093/nar/25.5.955. PMC 146525. PMID 9023104.
  117. ^ Gautheret D, Lambert A (2001). "Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles". J Mol Biol. 313 (5): 1003–11. doi:10.1006/jmbi.2001.5102. PMID 11700055.
  118. ^ Lambert A, Fontaine JF, Legendre M, Leclerc F, Permal E, Major F, Putzer H, Delfour O, Michot B, Gautheret D (2004). "The ERPIN server: an interface to profile-based RNA motif identification". Nucleic Acids Res. 32 (Web Server issue): W160–5. doi:10.1093/nar/gkh418. PMC 441556. PMID 15215371.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  119. ^ Lambert A, Legendre M, Fontaine JF, Gautheret D (2005). "Computing expectation values for RNA motifs using discrete convolutions". BMC Bioinformatics. 6: 118. doi:10.1186/1471-2105-6-118. PMC 1168889. PMID 15892887.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  120. ^ Nawrocki EP, Eddy SR (2007). "Query-dependent banding (QDB) for faster RNA similarity searches". PLoS Comput Biol. 3 (3): e56. Bibcode:2007PLSCB...3...56N. doi:10.1371/journal.pcbi.0030056. PMC 1847999. PMID 17397253.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  121. ^ Eddy SR (2002). "A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure". BMC Bioinformatics. 3: 18. doi:10.1186/1471-2105-3-18. PMC 119854. PMID 12095421.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  122. ^ Eddy SR, Durbin R (1994). "RNA sequence analysis using covariance models". Nucleic Acids Res. 22 (11): 2079–88. doi:10.1093/nar/22.11.2079. PMC 308124. PMID 8029015.
  123. ^ Sato K, Sakakibara Y (2005). "RNA secondary structural alignment with conditional random fields". Bioinformatics. 21. Suppl 2 (suppl_2): ii237–42. doi:10.1093/bioinformatics/bti1139. PMID 16204111.
  124. ^ Weinberg Z, Ruzzo WL (2004). "Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy". Bioinformatics. 20. Suppl 1 (suppl_1): i334–41. doi:10.1093/bioinformatics/bth925. PMID 15262817.
  125. ^ Weinberg Z, Ruzzo WL (2006). "Sequence-based heuristics for faster annotation of non-coding RNA families". Bioinformatics. 22 (1): 35–9. doi:10.1093/bioinformatics/bti743. PMID 16267089.
  126. ^ Klein RJ, Eddy SR (2003). "RSEARCH: finding homologs of single structured RNA sequences". BMC Bioinformatics. 4: 44. doi:10.1186/1471-2105-4-44. PMC 239859. PMID 14499004.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  127. ^ Meyer F, Kurtz S, Backofen R, Will S, Beckstette M (2011). "Structator: fast index-based search for RNA sequence-structure patterns". BMC Bioinformatics. 12: 214. doi:10.1186/1471-2105-12-214. PMC 3154205. PMID 21619640.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  128. ^ Gardner PP, Giegerich R (2004). "A comprehensive comparison of comparative RNA structure prediction approaches". BMC Bioinformatics. 5: 140. doi:10.1186/1471-2105-5-140. PMC 526219. PMID 15458580.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  129. ^ Gardner PP, Wilm A, Washietl S (2005). "A benchmark of multiple sequence alignment programs upon structural RNAs". Nucleic Acids Res. 33 (8): 2433–9. doi:10.1093/nar/gki541. PMC 1087786. PMID 15860779.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  130. ^ Wilm A, Mainz I, Steger G (2006). "An enhanced RNA alignment benchmark for sequence alignment programs". Algorithms Mol Biol. 1 (1): 19. doi:10.1186/1748-7188-1-19. PMC 1635699. PMID 17062125.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  131. ^ Freyhult EK, Bollback JP, Gardner PP (2007). "Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA". Genome Res. 17 (1): 117–25. doi:10.1101/gr.5890907. PMC 1716261. PMID 17151342.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  132. ^ Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006). "4SALE--a tool for synchronous RNA sequence and secondary structure alignment and editing". BMC Bioinformatics. 7: 498. doi:10.1186/1471-2105-7-498. PMC 1637121. PMID 17101042.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  133. ^ Bendana YR, Holmes IH (2008). "Colorstock, SScolor, Rat ́on: RNA Alignment Visualization Tools". Bioinformatics. 24 (4): 579–80. doi:10.1093/bioinformatics/btm635. PMID 18218657.
  134. ^ Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009). "The Integrated Genome Browser: Free software for distribution and exploration of genome-scale data sets". Bioinformatics. 25 (20): 2730–2731. doi:10.1093/bioinformatics/btp472. PMC 2759552. PMID 19654113.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  135. ^ Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009). "Jalview Version 2--a multiple sequence alignment editor and analysis workbench". Bioinformatics. 25 (9): 1189–91. doi:10.1093/bioinformatics/btp033. PMC 2672624. PMID 19151095.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  136. ^ Clamp M, Cuff J, Searle SM, Barton GJ (2004). "The Jalview Java alignment editor". Bioinformatics. 20 (3): 426–7. doi:10.1093/bioinformatics/btg430. PMID 14960472.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  137. ^ Griffiths-Jones S (2005). "RALEE--RNA ALignment editor in Emacs". Bioinformatics. 21 (2): 257–9. doi:10.1093/bioinformatics/bth489. PMID 15377506.
  138. ^ Andersen ES, Lind-Thomsen A, Knudsen B; et al. (2007). "Semiautomated improvement of RNA alignments". RNA. 13 (11): 1850–9. doi:10.1261/rna.215407. PMC 2040093. PMID 17804647. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  139. ^ I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994). "Fast Folding and Comparison of RNA Secondary Structures". Monatshefte f. Chemie. 125 (2): 167–188. doi:10.1007/BF00818163.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  140. ^ Byun Y, Han K (2009). "PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots". Bioinformatics. 25 (11): 1435–7. doi:10.1093/bioinformatics/btp252. PMID 19369500.
  141. ^ Byun Y, Han K (2006). "PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures". Nucleic Acids Res. 34 (Web Server issue): W416–22. doi:10.1093/nar/gkl210. PMC 1538805. PMID 16845039.
  142. ^ Han K, Byun Y (2003). "PSEUDOVIEWER2: Visualization of RNA pseudoknots of any type". Nucleic Acids Res. 31 (13): 3432–40. doi:10.1093/nar/gkg539. PMC 168946. PMID 12824341.
  143. ^ Han K, Lee Y, Kim W (2002). "PseudoViewer: automatic visualization of RNA pseudoknots". Bioinformatics. 18. Suppl 1: S321–8. doi:10.1093/bioinformatics/18.suppl_1.S321. PMID 12169562.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  144. ^ Kaiser A, Krüger J, Evers DJ (2007). "RNA Movies 2: sequential animation of RNA secondary structures". Nucleic Acids Res. 35 (Web Server issue): W330–4. doi:10.1093/nar/gkm309. PMC 1933240. PMID 17567618.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  145. ^ Evers D, Giegerich R (1999). "RNA movies: visualizing RNA secondary structure spaces". Bioinformatics. 15 (1): 32–7. doi:10.1093/bioinformatics/15.1.32. PMID 10068690.
  146. ^ Martinez HM, Maizel JV, Shapiro BA (2008). "RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA". J Biomol Struct Dyn. 25 (6): 669–83. PMID 18399701.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  147. ^ Reuter JS, Mathews DH (2010). "RNAstructure: software for RNA secondary structure prediction and analysis". BMC Bioinformatics. 11: 129. doi:10.1186/1471-2105-11-129. PMID 20230624.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  148. ^ Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E (2003). "Tools for the automatic identification and classification of RNA base pairs". Nucleic Acids Res. 31 (13): 3450–60. doi:10.1093/nar/gkg529. PMC 168936. PMID 12824344.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  149. ^ Darty K, Denise A, Ponty Y (2009). "VARNA: Interactive drawing and editing of the RNA secondary structure". Bioinformatics. 25 (15): 1974–5. doi:10.1093/bioinformatics/btp250. PMC 2712331. PMID 19398448.{{cite journal}}: CS1 maint: multiple names: authors list (link)