Quasisymmetric map: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Weakly quasisymmetric maps: Typo fixing per WP:HYPHEN, replaced: weakly- → weakly (2) using AWB (7774)
m Citation parameter fixes, using AWB (9466)
Line 15: Line 15:


==Examples==
==Examples==

===Weakly quasisymmetric maps===
===Weakly quasisymmetric maps===


Line 32: Line 33:


==Quasisymmetric maps and doubling measures==
==Quasisymmetric maps and doubling measures==

===The real line===
===The real line===


Line 47: Line 49:
then the map
then the map
:<math> f(x) = \frac{1}{2}\int_{\mathbb{R}^{n}}\left(\frac{x-y}{|x-y|}+\frac{y}{|y|}\right)\,d\mu(y)</math>
:<math> f(x) = \frac{1}{2}\int_{\mathbb{R}^{n}}\left(\frac{x-y}{|x-y|}+\frac{y}{|y|}\right)\,d\mu(y)</math>
is quasisymmetric (in fact, it is ''δ''-monotone for some ''δ'' depending on the measure ''μ'').<ref>{{cite journal| last = Kovalev | first = Leonid | last2 = Maldonado | first2 = Diego | last3 = Wu | first3 = Jang-Mei | title = Doubling measures, monotonicity, and quasiconformality | Math. Z. | volume = 257 | year = 2007 | number = 3 | pages = 525–545}}</ref>
is quasisymmetric (in fact, it is ''δ''-monotone for some ''δ'' depending on the measure ''μ'').<ref>{{cite journal| last = Kovalev | first = Leonid | last2 = Maldonado | first2 = Diego | last3 = Wu | first3 = Jang-Mei | title = Doubling measures, monotonicity, and quasiconformality |journal= Math. Z. | volume = 257 | year = 2007 | number = 3 | pages = 525–545 | arxiv=math/0611110 | doi=10.1007/s00209-007-0132-5}}</ref>


==Quasisymmetry and quasiconformality in Euclidean space==
==Quasisymmetry and quasiconformality in Euclidean space==

Revision as of 06:46, 10 September 2013

In mathematics, a quasisymmetric homeomorphism between metric spaces is a map that generalizes bi-Lipschitz maps. While bi-Lipschitz maps shrink or expand the diameter of a set by no more than a multiplicative factor, quasisymmetric maps satisfy the weaker geometric property that they preserve the relative sizes of sets: if two sets A and B have diameters t and are no more than distance t apart, then the ratio of their sizes changes by no more than a multiplicative constant. These maps are also related to quasiconformal maps, since in many circumstances they are in fact equivalent.[1]

Definition

Let (XdX) and (YdY) be two metric spaces. A homeomorphism f:X → Y is said to be η-quasisymmetric if there is an increasing function η : [0, ∞) → [0, ∞) such that for any triple xyz of distinct points in X, we have

Basic properties

Inverses are quasisymmetric
If f : X → Y is an invertible η-quasisymmetric map as above, then its inverse map is ή-quasisymmetric, where ή(t) = 1/η(1/t).
Quasisymmetric maps preserve relative sizes of sets
If A and B are subsets of X and A is a subset of B, then

Examples

Weakly quasisymmetric maps

A map f:X→Y is said to be H-weakly-quasisymmetric for some H > 0 if for all triples of distinct points x,y,z in X, we have

Not all weakly quasisymmetric maps are quasisymmetric. However, if X is connected and doubling, then all weakly quasisymmetric maps are quasisymmetric. The appeal of this result is that proving weak-quasisymmetry is much easier than proving quasisymmetry directly, and in many natural settings we have the luck of knowing the two are equivalent.

δ-monotone maps

A monotone map f:H → H on a Hilbert space H is δ-monotone if for all x and y in H,

To grasp what this condition means geometrically, suppose f(0) = 0 and consider the above estimate when y = 0. Then it implies that the angle between the vector x and its image f(x) stays between 0 and arccos δ < π/2.

These maps are quasisymmetric, although they are a much narrower subclass of quasisymmetric maps. For example, while a general quasisymmetric map in the complex plane could map the real line to a set of Hausdorff dimension strictly greater than one, a δ-monotone will always map the real line to a rotated graph of a Lipschitz function L:ℝ → ℝ.[2]

Quasisymmetric maps and doubling measures

The real line

Quasisymmetric homeomorphisms of the real line to itself can be characterized in terms of their derivatives.[3] An increasing homeomorphism f:ℝ → ℝ is quasisymmetric if and only if there is a constant C > 0 and a doubling measure μ on the real line such that

Euclidean space

An analogous result holds in Euclidean space. Suppose C = 0 and we rewrite the above equation for f as

Writing it this way, we can attempt to define a map using this same integral, but instead integrate (what is now a vector valued integrand) over ℝn: if μ is a doubling measure on ℝn and

then the map

is quasisymmetric (in fact, it is δ-monotone for some δ depending on the measure μ).[4]

Quasisymmetry and quasiconformality in Euclidean space

Let Ω and Ω´ be open subsets of ℝn. If f : Ω → Ω´ is η-quasisymmetric, then it is also K-quasiconformal, where K > 0 is a constant depending on η.

Conversely, if f : Ω → Ω´ is K-quasiconformal and B(x, 2r) is contained in Ω, then f is η-quasisymmetric on B(xr), where η depends only on K.

References

  1. ^ Heinonen, Juha (2001). Lectures on Analysis on Metric Spaces. Universitext. Springer-Verlag. pp. x+140. ISBN 0-387-95104-0. {{cite book}}: Unknown parameter |address= ignored (|location= suggested) (help)
  2. ^ Kovalev, Leonid V. (2007). "Quasiconformal geometry of monotone mappings". J. Lond. Math. Soc. (2). 75 (2): 391–408.
  3. ^ Beurling, A. (1956). "The boundary correspondence under quasiconformal mappings". Acta Math. 96: 125–124. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Kovalev, Leonid; Maldonado, Diego; Wu, Jang-Mei (2007). "Doubling measures, monotonicity, and quasiconformality". Math. Z. 257 (3): 525–545. arXiv:math/0611110. doi:10.1007/s00209-007-0132-5.