Jump to content

Automatic sequence: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 775641481 by Materialscientist (talk) - see previous edit summaries and talk page for details on my changes
Added history section, moved uncited references to further reading section
Line 1: Line 1:
In [[mathematics]] and [[theoretical computer science]], an '''automatic sequence''' (also called a '''''k''-automatic sequence''' when one wants to indicate that the base of the numerals used is ''k'') is an infinite [[sequence]] of terms characterized by a [[finite automaton]]. The ''n''-th term of an automatic sequence ''a''(''n'') is a mapping of the final state reached in a finite automaton accepting the digits of the number ''n'' in some fixed [[radix|base]]&nbsp;''k''.<ref name=as1>Allouche & Shallit (2003) p.&nbsp;152</ref><ref name=BLRS78>Berstel et al (2009) p.&nbsp;78</ref>
In [[mathematics]] and [[theoretical computer science]], an '''automatic sequence''' (also called a '''''k''-automatic sequence''' or a '''''k''-recognizable sequence''' when one wants to indicate that the base of the numerals used is ''k'') is an infinite [[sequence]] of terms characterized by a [[finite automaton]]. The ''n''-th term of an automatic sequence ''a''(''n'') is a mapping of the final state reached in a finite automaton accepting the digits of the number ''n'' in some fixed [[radix|base]]&nbsp;''k''.<ref name=as1>Allouche & Shallit (2003) p.&nbsp;152</ref><ref name=BLRS78>Berstel et al (2009) p.&nbsp;78</ref>


An '''automatic set''' is a set of non-negative integers ''S'' for which the sequence of values of its characteristic function χ<sub>''S''</sub> is an automatic sequence; that is, ''S'' is ''k''-automatic if χ<sub>''S''</sub> is ''k''-automatic, where χ<sub>''S''</sub> = 1 if ''n''&nbsp;<math>\in</math>&nbsp;''S'' and 0 otherwise.<ref>Allouche & Shallit (2003) p.&nbsp;168</ref><ref name=PF13/>
An '''automatic set''' is a set of non-negative integers ''S'' for which the sequence of values of its characteristic function χ<sub>''S''</sub> is an automatic sequence; that is, ''S'' is ''k''-automatic if χ<sub>''S''</sub> is ''k''-automatic, where χ<sub>''S''</sub> = 1 if ''n''&nbsp;<math>\in</math>&nbsp;''S'' and 0 otherwise.<ref>Allouche & Shallit (2003) p.&nbsp;168</ref><ref name=PF13/>
Line 40: Line 40:
===Decimation===
===Decimation===
Let ''k''&nbsp;<math>\geq</math>&nbsp;2. For a sequence ''w'', we define the ''k-decimations'' of ''w'' for ''r''&nbsp;=&nbsp;0,1,...,''k''&nbsp;−&nbsp;1 to be the subsequences consisting of the letters in positions congruent to ''r'' modulo ''k''. The decimation kernel of ''w'' consists of the set of words obtained by all possible repeated decimations of&nbsp;''w''. A sequence is ''k''-automatic if and only if the ''k''-decimation kernel is finite.<ref name=AS185>Allouche & Shallit (2003) p.&nbsp;185</ref><ref name=ApCOw527>Lothaire (2005) p.&nbsp;527</ref><ref name=BR91>Berstel & Reutenauer (2011) p.&nbsp;91</ref>
Let ''k''&nbsp;<math>\geq</math>&nbsp;2. For a sequence ''w'', we define the ''k-decimations'' of ''w'' for ''r''&nbsp;=&nbsp;0,1,...,''k''&nbsp;−&nbsp;1 to be the subsequences consisting of the letters in positions congruent to ''r'' modulo ''k''. The decimation kernel of ''w'' consists of the set of words obtained by all possible repeated decimations of&nbsp;''w''. A sequence is ''k''-automatic if and only if the ''k''-decimation kernel is finite.<ref name=AS185>Allouche & Shallit (2003) p.&nbsp;185</ref><ref name=ApCOw527>Lothaire (2005) p.&nbsp;527</ref><ref name=BR91>Berstel & Reutenauer (2011) p.&nbsp;91</ref>

==History==
Automatic sequences were introduced by [[Julius Richard Büchi|Büchi]] in 1960,<ref>{{cite journal | first=Julius Richard | last=Büchi | title=Weak second-order arithmetic and finite automata | journal=Z. Math. Logik Grundlagen Math. | volume=6 | year=1960 | pages=66–92 | doi=10.1007/978-1-4613-8928-6_22 }}</ref> although his paper took a more logico-theoretic approach to the matter and did not use the terminology found in this article. The notion of automatic sequences was further studied by Cobham in 1972, who called these sequences "uniform [[Tag system|tag sequences]]".<ref>{{cite journal | first=Alan | last=Cobham | title=Uniform tag sequences | journal=Math. Systems Theory | volume=6 | year=1972 | pages=164–192 | doi=10.1007/BF01706087 }}</ref> The term "automatic sequence" first appeared in a paper of Deshouillers.<ref>{{cite journal | first=J.-M. | last=Deshouillers | title=La répartition modulo 1 des puissances de rationnels dans l’anneau des séries formelles sur un corps fini | journal=Séminaire de Théorie des Nombres de Bordeaux | year=1979–1980 | pages=5.01–5.22 }}</ref>


==Examples==
==Examples==
Line 82: Line 85:
* {{cite book | last1=Berstel | first1=Jean | last2=Lauve | first2=Aaron | last3=Reutenauer | first3=Christophe | last4=Saliola | first4=Franco V. | title=Combinatorics on words. Christoffel words and repetitions in words | series=CRM Monograph Series | volume=27 | location=Providence, RI | publisher=[[American Mathematical Society]] | year=2009 | isbn=978-0-8218-4480-9 | url=http://www.ams.org/bookpages/crmm-27 | zbl=1161.68043 }}
* {{cite book | last1=Berstel | first1=Jean | last2=Lauve | first2=Aaron | last3=Reutenauer | first3=Christophe | last4=Saliola | first4=Franco V. | title=Combinatorics on words. Christoffel words and repetitions in words | series=CRM Monograph Series | volume=27 | location=Providence, RI | publisher=[[American Mathematical Society]] | year=2009 | isbn=978-0-8218-4480-9 | url=http://www.ams.org/bookpages/crmm-27 | zbl=1161.68043 }}
* {{cite book | last1=Berstel | first1=Jean | last2=Reutenauer | first2=Christophe | title=Noncommutative rational series with applications | series=Encyclopedia of Mathematics and Its Applications | volume=137 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2011 | isbn=978-0-521-19022-0 | zbl=1250.68007 }}
* {{cite book | last1=Berstel | first1=Jean | last2=Reutenauer | first2=Christophe | title=Noncommutative rational series with applications | series=Encyclopedia of Mathematics and Its Applications | volume=137 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2011 | isbn=978-0-521-19022-0 | zbl=1250.68007 }}
* {{cite book | editor1-last=Berthé | editor1-first=Valérie | editor2-last=Rigo | editor2-first=Michel | title=Combinatorics, automata, and number theory | series=Encyclopedia of Mathematics and its Applications | volume=135 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2010 | isbn=978-0-521-51597-9 | zbl=1197.68006 }}
*{{cite book | last=Lothaire | first=M. | authorlink=M. Lothaire | title=Applied combinatorics on words | others=A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, Gesine Reinert, Sophie Schbath, Michael Waterman, Philippe Jacquet, [[Wojciech Szpankowski]], Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and Valérie Berthé| series=Encyclopedia of Mathematics and Its Applications | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2005 | isbn=0-521-84802-4 | zbl=1133.68067 }}
*{{cite book | last=Lothaire | first=M. | authorlink=M. Lothaire | title=Applied combinatorics on words | others=A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, Gesine Reinert, Sophie Schbath, Michael Waterman, Philippe Jacquet, [[Wojciech Szpankowski]], Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and Valérie Berthé| series=Encyclopedia of Mathematics and Its Applications | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2005 | isbn=0-521-84802-4 | zbl=1133.68067 }}
*{{cite book | first=J. H. | last=Loxton | chapter=13. Automata and transcendence | pages=215–228 | title=New Advances in Transcendence Theory | editor1-link=Alan Baker (mathematician) | editor1-first=A. | editor1-last=Baker | publisher=[[Cambridge University Press]] | year=1988 | isbn=0-521-33545-0 | zbl=0656.10032 }}
* {{cite book | last=Pytheas Fogg | first=N. | others=Editors Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A. | title=Substitutions in dynamics, arithmetics and combinatorics | series=Lecture Notes in Mathematics | volume=1794 | location=Berlin | publisher=[[Springer-Verlag]] | year=2002 | isbn=3-540-44141-7 | zbl=1014.11015 }}
* {{cite book | last=Pytheas Fogg | first=N. | others=Editors Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A. | title=Substitutions in dynamics, arithmetics and combinatorics | series=Lecture Notes in Mathematics | volume=1794 | location=Berlin | publisher=[[Springer-Verlag]] | year=2002 | isbn=3-540-44141-7 | zbl=1014.11015 }}

==Further reading==
* {{cite book | editor1-last=Berthé | editor1-first=Valérie | editor2-last=Rigo | editor2-first=Michel | title=Combinatorics, automata, and number theory | series=Encyclopedia of Mathematics and its Applications | volume=135 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2010 | isbn=978-0-521-51597-9 | zbl=1197.68006 }}
*{{cite book | first=J. H. | last=Loxton | chapter=13. Automata and transcendence | pages=215–228 | title=New Advances in Transcendence Theory | editor1-link=Alan Baker (mathematician) | editor1-first=A. | editor1-last=Baker | publisher=[[Cambridge University Press]] | year=1988 | isbn=0-521-33545-0 | zbl=0656.10032 }}
*{{citation | last = Rowland | first = Eric | title = What is ... an automatic sequence? | journal = Notices of the American Mathematical Society | volume = 62 | year = 2015 | pages = 274–276 | url = http://dx.doi.org/10.1090/noti1218}}.
*{{citation | last = Rowland | first = Eric | title = What is ... an automatic sequence? | journal = Notices of the American Mathematical Society | volume = 62 | year = 2015 | pages = 274–276 | url = http://dx.doi.org/10.1090/noti1218}}.
*{{cite book | editor1-first=Dennis A. | editor1-last=Hejhal | editor1-link=Dennis Hejhal | editor2-last=Friedman | editor2-first=Joel | editor3-last=Gutzwiller | editor3-first=Martin C. | editor3-link=Martin Gutzwiller | editor4-last=Odlyzko | editor4-first=Andrew M. | editor4-link=Andrew Odlyzko | title=Emerging applications of number theory. Based on the proceedings of the IMA summer program, Minneapolis, MN, USA, July 15–26, 1996 | series=The IMA volumes in mathematics and its applications | volume=109 | publisher=[[Springer-Verlag]] | year=1999 | isbn=0-387-98824-6 | last=Shallit | first=Jeffrey | author1-link=Jeffrey Shallit | chapter=Number theory and formal languages | pages=547–570 }}
*{{cite book | editor1-first=Dennis A. | editor1-last=Hejhal | editor1-link=Dennis Hejhal | editor2-last=Friedman | editor2-first=Joel | editor3-last=Gutzwiller | editor3-first=Martin C. | editor3-link=Martin Gutzwiller | editor4-last=Odlyzko | editor4-first=Andrew M. | editor4-link=Andrew Odlyzko | title=Emerging applications of number theory. Based on the proceedings of the IMA summer program, Minneapolis, MN, USA, July 15–26, 1996 | series=The IMA volumes in mathematics and its applications | volume=109 | publisher=[[Springer-Verlag]] | year=1999 | isbn=0-387-98824-6 | last=Shallit | first=Jeffrey | author1-link=Jeffrey Shallit | chapter=Number theory and formal languages | pages=547–570 }}

Revision as of 06:05, 16 April 2017

In mathematics and theoretical computer science, an automatic sequence (also called a k-automatic sequence or a k-recognizable sequence when one wants to indicate that the base of the numerals used is k) is an infinite sequence of terms characterized by a finite automaton. The n-th term of an automatic sequence a(n) is a mapping of the final state reached in a finite automaton accepting the digits of the number n in some fixed base k.[1][2]

An automatic set is a set of non-negative integers S for which the sequence of values of its characteristic function χS is an automatic sequence; that is, S is k-automatic if χS is k-automatic, where χS = 1 if n  S and 0 otherwise.[3][4]

Definition

Automatic sequences may be defined in a number of ways, all of which are equivalent. Four common definitions are as follows.

Automata-theoretic

Let k be a positive integer, and let D = (Q, Σk, δ, q0, Δ, τ) be a deterministic finite automaton with output, where

  • Q is the finite set of states;
  • the input alphabet Σk consists of the set {0,1,...,k-1} of possible digits in base-k notation;
  • δ : Q × ΣkQ is the transition function;
  • q0Q is the initial state;
  • the output alphabet Δ is similar to Σk; and
  • τ : Σk → Δ is the output function mapping from the input alphabet to the output alphabet.

Extend the transition function δ from acting on single digits to acting on strings of digits by defining the action of δ on a string s consisting of digits s1s2...st as:

δ(q,s) = δ(δ(q0, s1s2...st-1), st).

Define a function a from the set of positive integers to the output alphabet Δ as follows:

a(n) = τ(δ(q0,s(n))),

where s(n) is n written in base k. Then the sequence a = a(1)a(2)a(3)... is a k-automatic sequence.[1]

An automaton reading the base k digits of s(n) starting with the most significant digit is said to be direct reading, while an automaton starting with the least significant digit is reverse reading.[4] The above definition holds whether s(n) is direct or reverse reading.[5]

Substitution

Let σ be a k-uniform morphism of the free monoid E, so that σ(E Ek and which is prolongable[6] on e  E; that is, σ(e) begins with e. Let A and π be defined as above. If w is a fixed point of σ—that is to say, w = σ(w)—then m = π(w) is a k-automatic sequence over A;[7] this is Cobham's theorem.[2] Conversely, every k-automatic sequence is obtained in this way.[4]

k-kernel

Let k  2. The k-kernel of the sequence s(n){n 0} is the set of sequences

A sequence s(n){n 0} is k-automatic if its k-kernel is finite.

It follows that a k-automatic sequence is necessarily a sequence on a finite alphabet.

Decimation

Let k  2. For a sequence w, we define the k-decimations of w for r = 0,1,...,k − 1 to be the subsequences consisting of the letters in positions congruent to r modulo k. The decimation kernel of w consists of the set of words obtained by all possible repeated decimations of w. A sequence is k-automatic if and only if the k-decimation kernel is finite.[8][9][10]

History

Automatic sequences were introduced by Büchi in 1960,[11] although his paper took a more logico-theoretic approach to the matter and did not use the terminology found in this article. The notion of automatic sequences was further studied by Cobham in 1972, who called these sequences "uniform tag sequences".[12] The term "automatic sequence" first appeared in a paper of Deshouillers.[13]

Examples

The following sequences are automatic:

over the field F2(z).[17]

Properties

For given k and r, a set is k-automatic if and only if it is kr-automatic. Otherwise, for h and k multiplicatively independent, then a set is both h-automatic and k-automatic if and only if it is 1-automatic; that is, if and only if it is ultimately periodic.[24] This theorem is also due to Cobham,[25] with a multidimensional generalisation due to Semënov.[26][27]

If u(n) is a k-automatic sequence then the sequences u(kn) and u(kn − 1) are ultimately periodic.[28] Conversely, if v(n) is ultimately periodic then the sequence u defined by u(kn) = v(n) and otherwise zero is k-automatic.[29]

Let u(n) be a k-automatic sequence over the alphabet A. If f is a uniform morphism from A to B then the word f(u) is k-automatic sequence over the alphabet B.[30]

Let u(n) be a sequence over the alphabet A and suppose that there is an injective function j from A to the finite field Fq. The associated formal power series is

The sequence u is q-automatic if and only if the power series fu is algebraic over the rational function field Fq(z).[31]

Every automatic sequence is a morphic word.[32]

1-automatic sequences

k-automatic sequences are normally only defined for k  2.[1] The concept can be extended to k = 1 by defining a 1-automatic sequence to be a sequence whose n-th term depends on the unary notation for n; that is, (1)n. Since a finite state automaton must eventually return to a previously visited state, all 1-automatic sequences are eventually periodic.

Generalizations

k-automatic sequences are generalized to infinite alphabets by k-regular sequences.

See also

Notes

  1. ^ a b c d Allouche & Shallit (2003) p. 152
  2. ^ a b c Berstel et al (2009) p. 78
  3. ^ Allouche & Shallit (2003) p. 168
  4. ^ a b c Pytheas Fogg (2002) p. 13
  5. ^ Pytheas Fogg (2002) p. 15
  6. ^ Allouche & Shallit (2003) p. 212
  7. ^ Allouche & Shallit (2003) p. 175
  8. ^ Allouche & Shallit (2003) p. 185
  9. ^ Lothaire (2005) p. 527
  10. ^ Berstel & Reutenauer (2011) p. 91
  11. ^ Büchi, Julius Richard (1960). "Weak second-order arithmetic and finite automata". Z. Math. Logik Grundlagen Math. 6: 66–92. doi:10.1007/978-1-4613-8928-6_22.
  12. ^ Cobham, Alan (1972). "Uniform tag sequences". Math. Systems Theory. 6: 164–192. doi:10.1007/BF01706087.
  13. ^ Deshouillers, J.-M. (1979–1980). "La répartition modulo 1 des puissances de rationnels dans l'anneau des séries formelles sur un corps fini". Séminaire de Théorie des Nombres de Bordeaux: 5.01–5.22.
  14. ^ Lothaire (2005) p. 528
  15. ^ a b Lothaire (2005) p. 525
  16. ^ a b Berstel & Reutenauer (2011) p. 92
  17. ^ Berstel & Reutenauer (2011) p. 94
  18. ^ Allouche & Shallit (2003) p. 154
  19. ^ Allouche & Shallit (2003) p. 156
  20. ^ Allouche & Shallit (2003) p. 155
  21. ^ Lothaire (2005) p. 526
  22. ^ Allouche & Shallit (2003) p. 183
  23. ^ Allouche & Shallit (2003) p. 176
  24. ^ Allouche & Shallit (2003) pp. 345–350
  25. ^ Cobham, Alan (1969). "On the base-dependence of sets of numbers recognizable by finite automata". Math. Systems Theory. 3 (2): 186–192. doi:10.1007/BF01746527.
  26. ^ Semenov, A. L. (1977). "Presburgerness of predicates regular in two number systems". Sibirsk. Mat. Zh. (in Russian). 18: 403–418.
  27. ^ Point, F.; Bruyère, V. (April 1997). "On the Cobham-Semenov theorem". Theory of Computing Systems. 30 (2): 197–220. doi:10.1007/BF02679449.
  28. ^ Lothaire (2005) p. 529
  29. ^ Berstel & Reutenauer (2011) p. 103
  30. ^ Lothaire (2005) p. 532
  31. ^ Berstel & Reutenauer (2011) p. 93
  32. ^ Lothaire (2005) p. 524

References

Further reading