Topological K-theory: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m cleanup using AWB
Line 64: Line 64:
==References==
==References==
{{Reflist}}
{{Reflist}}
* {{Citation | last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | title=K-theory | publisher=[[Addison-Wesley]] | edition=2nd | series=Advanced Book Classics | isbn=978-0-201-09394-0 | mr=1043170 | year=1989}}
* {{cite book |last1=Atiyah |first1=Michael Francis |author1-link=Michael Atiyah |year=1989 |title=K-theory |series=Advanced Book Classics |edition=2nd |publisher=[[Addison-Wesley]] |isbn=978-0-201-09394-0 |mr=1043170}}
*{{Citation | editor1-last=Friedlander | editor1-first=Eric | editor2-last=Grayson | editor2-first=Daniel | title=Handbook of K-Theory | url=http://www.springerlink.com/content/978-3-540-23019-9/ | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-30436-4 | mr=2182598 | year=2005}}
* {{cite book |editor1-last=Friedlander |editor1-first=Eric |editor2-last=Grayson |editor2-first=Daniel |year=2005 |title=Handbook of K-Theory |location=Berlin, New York |publisher=[[Springer-Verlag]] |isbn=978-3-540-30436-4 |mr=2182598 |doi=10.1007/978-3-540-27855-9}}
* [[Max Karoubi]] (1978), [http://www.institut.math.jussieu.fr/~karoubi/KBook.html K-theory, an introduction] Springer-Verlag
* {{cite book |last1=Karoubi |first1=Max |author1-link=Max Karoubi |year=1978 |title=K-theory: an introduction |publisher=Springer-Verlag |isbn=0-387-08090-2 |doi=10.1007/978-3-540-79890-3}}
** Max Karoubi (2006), "K-theory. An elementary introduction", {{arxiv|math|0602082}}
* {{cite arXiv |last1=Karoubi |first1=Max |author1-link=Max Karoubi |year=2006 |title=K-theory. An elementary introduction |arxiv=math/0602082}}
* [[Allen Hatcher]], ''[http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html Vector Bundles & K-Theory]'', (2003)
* {{cite web |last1=Hatcher |first1=Allen |authorlink1=Allen Hatcher |year=2003 |title=Vector Bundles & K-Theory |url=http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}}


[[Category:K-theory]]
[[Category:K-theory]]

Revision as of 12:12, 22 August 2017

In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.

Definitions

Let X be a compact Hausdorff space and k = R, C. Then Kk(X) is the Grothendieck group of the commutative monoid of isomorphism classes of finite-dimensional k-vector bundles over X under Whitney sum. Tensor product of bundles gives K-theory a commutative ring structure. Without subscripts, K(X) usually denotes complex K-theory whereas real K-theory is sometimes written as KO(X). The remaining discussion is focussed on complex K-theory.

As a first example, note that the K-theory of a point are the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the natural numbers are the integers.

There is also a reduced version of K-theory, , defined for X a compact pointed space (cf. reduced homology). This reduced theory is intuitively K(X) modulo trivial bundles. It is defined as the group of stable equivalence classes of bundles. Two bundles E and F are said to be stably isomorphic if there are trivial bundles ε1 and ε2, so that Eε1Fε2. This equivalence relation results in a group since every vector bundle can be completed to a trivial bundle by summing with its orthogonal complement. Alternatively, can be defined as the kernel of the map K(X) → K({x0}) ≅ Z induced by the inclusion of the base point x0 into X.

K-theory forms a multiplicative (generalized) cohomology theory as follows. The short exact sequence of a pair of pointed spaces (X, A)

extends to a long exact sequence

Let Sn be the n-th reduced suspension of a space and then define

Negative indices are chosen so that the coboundary maps increase dimension.

It is often useful to have an unreduced version of these groups, simply by defining:

Here is with a disjoint basepoint labeled '+' adjoined.[1]

Finally, the Bott periodicity theorem as formulated below extends the theories to positive integers.

Properties

  • Kn respectively is a contravariant functor from the homotopy category of (pointed) spaces to the category of commutative rings. Thus, for instance, the K-theory over contractible spaces is always Z.
  • The spectrum of K-theory is BU × Z (with the discrete topology on Z), i.e. K(X) ≅ [X+, Z × BU], where [ , ] denotes pointed homotopy classes and BU is the colimit of the classifying spaces of the unitary groups: BU(n) ≅ Gr(n, C). Similarly,
For real K-theory use BO.
where T(E) is the Thom space of the vector bundle E over X. This holds whenever E is a spin-bundle.

Bott periodicity

The phenomenon of periodicity named after Raoul Bott (see Bott periodicity theorem) can be formulated this way:

  • K(X × S2) = K(X) ⊗ K(S2), and K(S2) = Z[H]/(H − 1)2 where H is the class of the tautological bundle on S2 = P1(C), i.e. the Riemann sphere.
  • Ω2BUBU × Z.

In real K-theory there is a similar periodicity, but modulo 8.

Applications

The two most famous applications of topological K-theory are both due to J. F. Adams. First he solved the Hopf invariant one problem by doing a computation with his Adams operations. Then he proved an upper bound for the number of linearly independent vector fields on spheres.

See also

References

  1. ^ Hatcher. Vector Bundles and K-theory (PDF). p. 57. Retrieved 27 July 2017.