Molar incisor hypomineralisation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Toothpac (talk | contribs)
added treatment and management for posterior teeth section
Added symptoms and explanations on MIH
Line 33: Line 33:
* Teeth affected with MIH are at an increased risk of acquiring [[Tooth decay|dental caries]]<ref>{{Cite journal|last=Elfrink|first=Marlies E. C.|last2=Schuller|first2=Annemarie A.|last3=Veerkamp|first3=Jaap S. J.|last4=Poorterman|first4=Jan H. G.|last5=Moll|first5=Henriette A.|last6=ten Cate|first6=Bob J. M.|date=March 2010|title=Factors increasing the caries risk of second primary molars in 5-year-old Dutch children|url=https://www.ncbi.nlm.nih.gov/pubmed/20384830|journal=International Journal of Paediatric Dentistry|volume=20|issue=2|pages=151–157|doi=10.1111/j.1365-263X.2009.01026.x|issn=1365-263X|pmid=20384830}}</ref>. This is because the properties of the enamel are altered by increased porosity and decreased hardness. Essentially, the balance between [[Mineralization (biology)|mineralisation]] and [[Demineralization (physiology)|demineralisation]] shifts to favour demineralisation of enamel, giving the tooth less resilience in structure, thereby making it vulnerable to [[Tooth decay|caries]]<ref name=":2">{{Cite journal|last=Silva MJ, Kilpatrick N, Crombie F et al|first=|date=2017|title=What's New in Molar Incisor Hypomineralization?|url=|journal=Dental Update|volume=44|pages=100-106|via=}}</ref>.
* Teeth affected with MIH are at an increased risk of acquiring [[Tooth decay|dental caries]]<ref>{{Cite journal|last=Elfrink|first=Marlies E. C.|last2=Schuller|first2=Annemarie A.|last3=Veerkamp|first3=Jaap S. J.|last4=Poorterman|first4=Jan H. G.|last5=Moll|first5=Henriette A.|last6=ten Cate|first6=Bob J. M.|date=March 2010|title=Factors increasing the caries risk of second primary molars in 5-year-old Dutch children|url=https://www.ncbi.nlm.nih.gov/pubmed/20384830|journal=International Journal of Paediatric Dentistry|volume=20|issue=2|pages=151–157|doi=10.1111/j.1365-263X.2009.01026.x|issn=1365-263X|pmid=20384830}}</ref>. This is because the properties of the enamel are altered by increased porosity and decreased hardness. Essentially, the balance between [[Mineralization (biology)|mineralisation]] and [[Demineralization (physiology)|demineralisation]] shifts to favour demineralisation of enamel, giving the tooth less resilience in structure, thereby making it vulnerable to [[Tooth decay|caries]]<ref name=":2">{{Cite journal|last=Silva MJ, Kilpatrick N, Crombie F et al|first=|date=2017|title=What's New in Molar Incisor Hypomineralization?|url=|journal=Dental Update|volume=44|pages=100-106|via=}}</ref>.
* The poor structural properties of the enamel in teeth with MIH also increase the likelihood of cavitation of any lesions<ref name=":2" />, thereby causing the lesion to progress at a faster rate. Progression of the carious lesion is also more rapid in teeth with MIH as patients may experience [[Dentin hypersensitivity|tooth sensitivity]] while carrying out oral hygiene, causing them to avoid doing so and consequentially accelerating the decay<ref name=":2" />.
* The poor structural properties of the enamel in teeth with MIH also increase the likelihood of cavitation of any lesions<ref name=":2" />, thereby causing the lesion to progress at a faster rate. Progression of the carious lesion is also more rapid in teeth with MIH as patients may experience [[Dentin hypersensitivity|tooth sensitivity]] while carrying out oral hygiene, causing them to avoid doing so and consequentially accelerating the decay<ref name=":2" />.

==== Symptoms ====

==== Hypersensitivity: ====
* Teeth affected by MIH are often affected by [[Dentin hypersensitivity|hypersensitivity]] due to changes in temperature or toothbrushing. A study has suggested that a possible cause of hypersensitivity in MIH is the inflammatory reactions in the pulp due to oral bacteria penetrating through the hypomineralised enamel into the [[Dentin|dentinal tubules]]. <ref>{{Cite journal|last=Fagrell|first=Tobias G.|last2=Lingström|first2=Peter|last3=Olsson|first3=Stina|last4=Steiniger|first4=Frank|last5=Norén|first5=Jörgen G.|date=2008-09-01|title=Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization|url=http://onlinelibrary.wiley.com/doi/10.1111/j.1365-263X.2007.00908.x/abstract|journal=International Journal of Paediatric Dentistry|language=en|volume=18|issue=5|pages=333–340|doi=10.1111/j.1365-263X.2007.00908.x|issn=1365-263X}}</ref>

==== Difficult to anaesthetise: ====
* It has been reported that MIH-affected teeth were more difficult to [[Anesthesia|anaesthetise]]. <ref>{{Cite journal|last=Kopperud|first=Simen E.|last2=Pedersen|first2=Cecilie Gravdahl|last3=Espelid|first3=Ivar|date=2016-07-04|title=Treatment decisions on Molar-Incisor Hypomineralization (MIH) by Norwegian dentists – a questionnaire study|url=https://doi.org/10.1186/s12903-016-0237-5|journal=BMC Oral Health|volume=17|pages=3|doi=10.1186/s12903-016-0237-5|issn=1472-6831}}</ref> Difficulty achieving anaesthesia in MIH-affected teeth may be caused by the chronic inflammation of the pulp due to the penetration of bacteria. <ref>{{Cite journal|last=Fayle|first=S. A.|date=September 2003|title=Molar incisor hypomineralisation: restorative management|url=https://www.ncbi.nlm.nih.gov/pubmed/14529331|journal=European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry|volume=4|issue=3|pages=121–126|issn=1591-996X|pmid=14529331}}</ref><ref>{{Cite journal|last=Jälevik|first=B.|last2=Klingberg|first2=G. A.|date=January 2002|title=Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars|url=https://www.ncbi.nlm.nih.gov/pubmed/11853245|journal=International Journal of Paediatric Dentistry|volume=12|issue=1|pages=24–32|issn=0960-7439|pmid=11853245}}</ref><ref>{{Cite journal|last=Croll|first=T. P.|date=August 2000|title=Restorative options for malformed permanent molars in children|url=https://www.ncbi.nlm.nih.gov/pubmed/11199658|journal=Compendium of Continuing Education in Dentistry (Jamesburg, N.J.: 1995)|volume=21|issue=8|pages=676–678, 680, 682|issn=1548-8578|pmid=11199658}}</ref> The presence of inflammation can reduce the efficacy of local anaesthetics <ref>{{Cite journal|last=Ueno|first=Takahiro|last2=Tsuchiya|first2=Hironori|last3=Mizogami|first3=Maki|last4=Takakura|first4=Ko|date=2008-11-13|title=Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite|url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218719/|journal=Journal of inflammation research|volume=1|pages=41–48|issn=1178-7031|pmc=PMC3218719|pmid=22096346}}</ref> which may then result in more anaesthetic being given to achieve anaesthesia. This can be especially challenging in paediatric dentistry thus more specialised methods may be needed to increase the efficiency of anaesthetising teeth. <ref>{{Cite journal|last=Cabasse|first=C.|last2=Marie-Cousin|first2=A.|last3=Huet|first3=A.|last4=Sixou|first4=J. L.|date=March 2015|title=Computer-assisted intraosseous anaesthesia for molar and incisor hypomineralisation teeth. A preliminary study|url=https://www.ncbi.nlm.nih.gov/pubmed/26058304|journal=Odonto-Stomatologie Tropicale = Tropical Dental Journal|volume=38|issue=149|pages=5–9|issn=0251-172X|pmid=26058304}}</ref>

==== Aesthetic problems: ====
* Opacities due to MIH can be quite visible especially on anterior teeth which could present as a problem aesthetically. Patients frequently claim aesthetic discomfort when anterior teeth are involved. <ref>{{Cite journal|last=Mastroberardino|first=Stefano|last2=Campus|first2=Guglielmo|last3=Strohmenger|first3=Laura|last4=Villa|first4=Alessandro|last5=Cagetti|first5=Maria Grazia|date=2012|title=An Innovative Approach to Treat Incisors Hypomineralization (MIH): A Combined Use of Casein Phosphopeptide-Amorphous Calcium Phosphate and Hydrogen Peroxide—A Case Report|url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513726/|journal=Case Reports in Dentistry|volume=2012|doi=10.1155/2012/379593|issn=2090-6447|pmc=PMC3513726|pmid=23243519}}</ref> The discoloured appearance of the anterior teeth could also have negative effects on a child’s psychological development and self-esteem. <ref>{{Cite journal|last=Rodd|first=H. D.|last2=Abdul-Karim|first2=A.|last3=Yesudian|first3=G.|last4=O'Mahony|first4=J.|last5=Marshman|first5=Z.|date=March 2011|title=Seeking children's perspectives in the management of visible enamel defects|url=https://www.ncbi.nlm.nih.gov/pubmed/20738432|journal=International Journal of Paediatric Dentistry|volume=21|issue=2|pages=89–95|doi=10.1111/j.1365-263X.2010.01096.x|issn=1365-263X|pmid=20738432}}</ref>

==== Tooth breakdown and restoration problems: ====
* MIH-affected teeth are more prone to breakdown as they are hypomineralised which weaken the enamel structure. <ref>{{Cite journal|last=Wong|first=F.|date=2004-05-22|title=Research Summary: Study of enamel density|url=http://www.nature.com/bdj/journal/v196/n10/full/4811299a.html|journal=British Dental Journal|language=en|volume=196|issue=10|pages=625–625|doi=10.1038/sj.bdj.4811299|issn=0007-0610}}</ref> Restorations placed on MIH-affected teeth were found to be more prone to failure due to both loss of tooth structure and material loss. <ref>{{Cite journal|last=Fragelli|first=Camila Maria Bullio|last2=Souza|first2=Juliana Feltrin de|last3=Jeremias|first3=Fabiano|last4=Cordeiro|first4=Rita de Cássia Loiola|last5=Santos-Pinto|first5=Lourdes|date=2015|title=Molar incisor hypomineralization (MIH): conservative treatment management to restore affected teeth|url=https://www.ncbi.nlm.nih.gov/pubmed/26083091|journal=Brazilian Oral Research|volume=29|doi=10.1590/1807-3107BOR-2015.vol29.0076|issn=1807-3107|pmid=26083091}}</ref> The enamel can also fracture more easily due to chewing forces. <ref>{{Cite journal|last=Weerheijm|first=K. L.|date=January 2004|title=Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management|url=https://www.ncbi.nlm.nih.gov/pubmed/15000003|journal=Dental Update|volume=31|issue=1|pages=9–12|issn=0305-5000|pmid=15000003}}</ref>


== Differential Diagnosis ==
== Differential Diagnosis ==

Revision as of 18:28, 27 October 2017

Molar Incisor Hypomineralisation (MIH) is a type of enamel defect affecting, as the name suggests, the first molars and incisors in the permanent dentition.[1] MIH is considered a worldwide problem and usually occurs in children under 10 years old.[2] This developmental condition is caused by the lack of mineralisation of enamel during its maturation phase, due to interruption to the function of ameloblasts.[1] Many factors have been suggested, such as genetics and medical problems during pregnancy[3], but only childhood illness, fever in particular, seems to be associated with MIH.[4] However, further studies on the aetiology of MIH are required because it is believed to be multifactorial.[4]

MIH often presents as discolouration on one to four affected permanent molars and the associated incisors. The enamel of the affected teeth appears yellow, brown, cream or white[1] and thus are sometimes referred to as ‘cheese molars’.[5] These teeth are deemed less aesthetically pleasing, hence causing distress in children with MIH and their parents.[6] It is important to note that although there is difference in enamel translucency in the affected teeth, there should not be any changes to the enamel thickness, unlike in enamel hypoplasia.[1]

As a consequence, children with MIH are more likely to experience tooth decay compared to those without the condition.[7] Moreover, the development of tooth decay is very rapid due to the less mineralised enamel.[1] MIH only becomes visible once the permanent molars start to erupt and that is when opacities on the tooth can be observed if it is affected. It will be useful for the children who are suspected to suffer from MIH to visit their dentist more frequently during the eruption of their first permanent molars[8] to prevent any further complications affecting their oral health.

Prevalence

Since first recognised in the late 1970s, the condition has puzzled many people. It is thought to be a unique defect unlike other enamel disturbances e.g. fluorosis or amelogenesis imperfecta. [1]

Many prevalence studies have now been published from findings across the globe. However, there is a large amount of variation across the results of these studies. It is reported that the prevalence of MIH ranges from 3.6% to 40.2% [9] with an estimate of 14.2% of the global population suffering. Worldwide there is much variation between continents with South America having the highest prevalence (18%), closely followed by Oceania (16.3%). The continent found to have least sufferers was Africa (10.9%). [1]

Multiple studies have provided evidence that there is no gender difference. However, a study by Kathmandu University reports that post eruptive breakdown occurs more frequently in boys than it does in girls. [10] A different study found that children under the age of 10 are more highly affected by the disease (15.1%) compared to older children (12.1%). [1]

Aetiology

The aetiology of MIH is thought to be multifactorial.

Pre-natally; risks, such as infection, maternal psychological stress and frequent exposure to ultrasonic scans were all correlated with increased risks of MIH.

During the perinatal stage, Pitiphat found that cesarean section and complications during vaginal delivery could contribute to an increased chance of MIH [1]. Children born preterm and those with poor general health or systemic conditions in their first 3 years of development also run a higher risk of developing MIH[11]. It has also been proposed that developmental dental defects were associated with long-term breastfeeding due to exposure to dioxin.

More recent evidence has suggested a relationship between respiratory diseases and oxygen shortage of the ameloblasts and MIH[12]. Lastly oxygen shortage combined with low birth weight is suspected to be a contributing factor. [13]

Signs & Symptoms

Signs: The distribution of disease in those affected with MIH can vary greatly. It can be common for the enamel of one molar to be affected while the enamel of the contralateral molar is clinically unaffected, or with minor defects only[1]

Lesions:

  • The lesions that appear in teeth affected with MIH can present as opacities that vary from white to yellow-brown[1]. They are usually asymmetrical in appearance, with a sharp demarcation that distinguishes between normal and affected enamel[14]. The lesions usually do not involve the cervical third of affected teeth[15].

Post eruptive breakdown (PEB):

  • PEB occurs due to the loading of masticatory forces on enamel weakened by MIH. The lesions resulting from PEB are irregularly shaped[4], with rough margins from the shearing of the enamel. PEB is more likely to occur in MIH affected teeth with yellow or brown opacities rather than those with white opacities, as darker lesions reflect a greater deficit in mineral content[4].

Atypical caries:

  • Teeth affected with MIH are at an increased risk of acquiring dental caries[16]. This is because the properties of the enamel are altered by increased porosity and decreased hardness. Essentially, the balance between mineralisation and demineralisation shifts to favour demineralisation of enamel, giving the tooth less resilience in structure, thereby making it vulnerable to caries[17].
  • The poor structural properties of the enamel in teeth with MIH also increase the likelihood of cavitation of any lesions[17], thereby causing the lesion to progress at a faster rate. Progression of the carious lesion is also more rapid in teeth with MIH as patients may experience tooth sensitivity while carrying out oral hygiene, causing them to avoid doing so and consequentially accelerating the decay[17].

Symptoms

Hypersensitivity:

  • Teeth affected by MIH are often affected by hypersensitivity due to changes in temperature or toothbrushing. A study has suggested that a possible cause of hypersensitivity in MIH is the inflammatory reactions in the pulp due to oral bacteria penetrating through the hypomineralised enamel into the dentinal tubules. [18]

Difficult to anaesthetise:

  • It has been reported that MIH-affected teeth were more difficult to anaesthetise. [19] Difficulty achieving anaesthesia in MIH-affected teeth may be caused by the chronic inflammation of the pulp due to the penetration of bacteria. [20][21][22] The presence of inflammation can reduce the efficacy of local anaesthetics [23] which may then result in more anaesthetic being given to achieve anaesthesia. This can be especially challenging in paediatric dentistry thus more specialised methods may be needed to increase the efficiency of anaesthetising teeth. [24]

Aesthetic problems:

  • Opacities due to MIH can be quite visible especially on anterior teeth which could present as a problem aesthetically. Patients frequently claim aesthetic discomfort when anterior teeth are involved. [25] The discoloured appearance of the anterior teeth could also have negative effects on a child’s psychological development and self-esteem. [26]

Tooth breakdown and restoration problems:

  • MIH-affected teeth are more prone to breakdown as they are hypomineralised which weaken the enamel structure. [27] Restorations placed on MIH-affected teeth were found to be more prone to failure due to both loss of tooth structure and material loss. [28] The enamel can also fracture more easily due to chewing forces. [29]

Differential Diagnosis

It is essential to exclude other causes of enamel opacities, differentiating MIH from them, to ensure an appropriate treatment plan is made. These conditions include:

  • Dental caries, which is the most common cause of destruction of dental hard tissues. This is more unlikely in a patient with a previously intact primary dentition. White spot lesions are also uncommon on incisors, hence ruling out dental caries.
  • Fluorosis, which can result from an intake of a high fluoride concentration while the tooth is still undergoing mineralisation. Fluorosis presents as irregular, diffuse enamel opacities which affect more than 1 tooth, in contrast to the well-demarcated borders of hypomineralised enamel seen in MIH.
  • Amelogenesis imperfecta, a genetic condition, and thus there may be a history of similar defects in other family members. This condition affects both the primary and permanent dentition, and all surfaces tend to be equally affected, differentiating it from MIH.
  • Trauma to primary incisors resulting in discolouration of permanent incisors.
  • Administration of tetracycline during pregnancy and to children under 6 resulting in tooth staining (grey or yellow).
  • Enamel hypoplasia, caused by defective enamel matrix formation, is a quantitative defect which presents as a localised reduction in enamel thickness. This differs from hypomineralisation, which is a qualitative defect affecting the translucency of enamel.[1]

Classification

MIH examination should be carried out on clean, wet teeth. The ideal age for examination is when the child is 8 years old - the age where all permanent first molars and most of the incisors are erupted. The permanent first molar will also still be in a comparatively sound condition without excessive post-eruption breakdown.[1] Judgements of each individual teeth should be recorded, aiding the correct diagnosis of the condition.

There is currently a lack of standardisation in the scoring system and severity indices used to record the diagnosis of MIH. Various systems commonly employed in studies include:

  • Modified Defect of Dental Enamel (DDE) Index[30]: This set of criteria allows for enamel defects to be detected, enabling a distinction between demarcated and diffused opacities.[31]
  • European Academy of Paediatric Dentistry (EAPD) judgement criteria: This set of criteria was developed in 2003 to standardise classifications for use in epidemiological studies. However, while it allows the categorisation of the enamel condition, it does not address the severity of the enamel condition.[32]
  • Molar Hypomineralisation Severity Index (MHSI): This set of criteria has been developed to address deficiencies in indices concerning the severity of hypomineralisation. It is based on both the clinical characteristics of hypomineralised defects and the EAPD judgement criteria.[33]

Treatment and Management

The frequency of first permanent molar treatment for children with MIH is nearly 10 times greater compared to children without MIH. [34] The available treatment modalities for MIH is extensive but the decision on which treatment should be used is complex and multi-factorial. Factors may include: condition severity, the patient’s dental age, the child/parent’s social background and expectations. [1] There are treatment modalities available to manage children affected by MIH; however, the evidence supporting these modalities are still weak. [35]

Prevention

Prevention is of prior importance at an early developmental age as the defective tooth is more likely to have caries and post-eruptive breakdown due to its increased porosity. [1] Appropriate dietary advice and toothpaste with a fluoride level of at least 1,000 ppm F should be recommended. [36] For treating spontaneous hypersensitivity professional applications of fluoride varnish (e.g. Duraphat 22,600ppm F) or 0.4% stannous fluoride gel may be helpful. [1]

Casein Phosphopepetide-Amorphus Calcium Phosphate (CPP-ACP) provides a super-saturated environment of calcium and phosphate on the enamel surface to enhance remineralisation in the form of toothpaste or sugar free chewing gum. Its clinical effectiveness is still debatable but may benefit those patients who complain of mild pain to external stimuli. [37] [38]

Anterior teeth

Etch-bleach seal technique

Involves repeated cycles of etching with 37% phosphoric acid followed by applying 5% sodium hypochlorite until improvement of discolouration is achieved. [39] Clear resin composite or resin infiltrate can be used to seal the lesion after the technique. [40]

Microabrasion

The aesthetics of a child’s anterior teeth is a concern for both children and their parents alike.

Yellow or brownish-yellow defects are of full thickness [41], and therefore may respond to bleaching with carbamide peroxide [42]. However, careful consideration should be made of the risks including hypersensitivity, mucosal irritation and enamel surface alterations. [43] Creamy-yellow or whitish-creamy defects are less porous and variable in depth [9], and may respond to microabrasion with 18% hydrochloric acid or 37.5% phosphoric acid and abrasive paste. [44] [45] Again, this should be undertaken cautiously as microabrasion may result in loss of enamel. [46]

Veneers

Direct or indirect composite veneers can be effective in improving aesthetics with minimal tooth tissue removal. [47] Ceramic veneers as a treatment option should be delayed due to the risks of resulting in a short clinical crown height, immature tooth pulp irritation and also the instability of the gingival margins during the eruption of teeth. [1]

Posterior teeth

Fissure sealants

The placement of fissure sealants on permanent molars without post-eruptive breakdown should be undertaken.[1] Use of a 5th generation bonding adhesive prior to fissure sealant application may improve retention rates of fissure sealants.[4]

For partially erupted molars with inadequate moisture control, glass ionomer cements (GIC) can be considered as an interim treatment option. As the retention rate of GIC is often poor, replacement with a resin-based fissure sealant is recommended following tooth eruption.[1]

Resin-based fissure sealants can be beneficial to patients affected with mild MIH where the first permanent molars have fully erupted, although the degree of hypomineralization affects the bond strength of said sealants.[17] [4] The bond strength of resin based fissure sealants to affected MIH can be enhanced by pre-treating with 5% sodium hypochlorite for one minute after etching, and applying a bonding agent. However, more evidence is needed from clinical based studies.[48][49]

Direct restorations

Cavity design

There is still much debate of whether margin extension should include removal of all defective enamel or only the porous enamel. The former provides sound enamel for bonding but leads to excessive tooth tissue loss. The latter is less invasive, but the margins may have a high risk of breakdown due to defective bonding.[1] Yet, it is agreed that adhesive restorations should be used as opposed to those reliant upon mechanical retention (such as amalgam). [17]

Composite resin restorations

Composite resin material has been shown to have longer-term stability in MIH teeth, with a median survival rate of 5.2 years[50] and a success rate of 74%-100%[51] [17] during a 4-year follow-up period. Self-etching adhesive was found to have better bond strength to enamel affected by MIH compared to total etch single-bottle adhesive.[52] The use of composite should be considered both for permanent molars affected by MIH, as well as incisors. Furthermore, composite veneers may achieve a better aesthetic result where deep lesions are seen in incisors. [53][54]

Glass ionomer cement (GIC) restorations

GIC materials have adhesive capabilities with both enamel and dentine, long-term fluoride release and hydrophilicity when there is inadequate moisture control intra-orally, during early post-eruptive stages. However, GIC’s poorer mechanical properties suggest avoidance in stress-bearing areas. In later post-eruptive stages GIC may be valuable as sub-layer beneath composite restorations.[1]

Indirect restorations

Preformed metal crowns

Pre-formed metal crowns (PMC), also known as stainless steel crowns, can be used to reduce the risk of marginal breakdown, coronal leakage and has a good longevity.[55] The use of preformed metal crowns on MIH-affected molars can prevent further tooth loss, control hypersensitivity and aim to establish correct interproximal and occlusal contact. They are relatively inexpensive and require little preparation.[52]

To prevent further tooth preparation and tissue loss, use of the ‘Hall’ technique should also be considered.[56] There advantage is use during any stage of post-eruptive breakdown, but evidence of their efficacy is limited. Although the PMC has evidence to show that it is well accepted, a few of the children and their carers expressed their concerns about the metallic appearances of the restoration.[57]

Cast restorations

Cast restorations may include full coverage crowns for MIH-affected permanent teeth. Generally cast restorations requiring tooth preparation are not recommended in young children due to large pulp size, short crown height and potential difficulties in obtaining a good impression for subgingival crown margins. [58]

References

  1. ^ a b c d e f g h i j k l m n o p q r s t Garg, Nishita; Jain, Abhay Kumar; Saha, Sonali; Singh, Jaspal (2012). "Essentiality of Early Diagnosis of Molar Incisor Hypomineralization in Children and Review of its Clinical Presentation, Etiology and Management". International Journal of Clinical Pediatric Dentistry. 5 (3): 190–196. doi:10.5005/jp-journals-10005-1164. ISSN 0974-7052. PMC 4155885. PMID 25206166.{{cite journal}}: CS1 maint: PMC format (link) Cite error: The named reference ":0" was defined multiple times with different content (see the help page).
  2. ^ Zhao, Dongdong; Dong, Bao; Yu, Dandan; Ren, Qiongqiong; Sun, Yehuan (2017-07-21). "The prevalence of molar incisor hypomineralization: evidence from 70 studies". International Journal of Paediatric Dentistry. doi:10.1111/ipd.12323. ISSN 1365-263X. PMID 28732120.
  3. ^ Lygidakis, N. A.; Wong, F.; Jälevik, B.; Vierrou, A.-M.; Alaluusua, S.; Espelid, I. (April 2010). "Best Clinical Practice Guidance for clinicians dealing with children presenting with Molar-Incisor-Hypomineralisation (MIH): An EAPD Policy Document". European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry. 11 (2): 75–81. ISSN 1818-6300. PMID 20403301.
  4. ^ a b c d e f Taylor, Greig D. (03 2017). "Molar incisor hypomineralisation". Evidence-Based Dentistry. 18 (1): 15–16. doi:10.1038/sj.ebd.6401219. ISSN 1476-5446. PMID 28338027. {{cite journal}}: Check date values in: |date= (help) Cite error: The named reference ":1" was defined multiple times with different content (see the help page).
  5. ^ Weerheijm, K. L.; Jälevik, B.; Alaluusua, S. (September 2001). "Molar-incisor hypomineralisation". Caries Research. 35 (5): 390–391. doi:47479. ISSN 0008-6568. PMID 11641576. {{cite journal}}: Check |doi= value (help)
  6. ^ Leal, Soraya C.; Oliveira, Tereza Raquel Mourão; Ribeiro, Ana Paula Dias (September 2017). "Do parents and children perceive molar-incisor hypomineralization as an oral health problem?". International Journal of Paediatric Dentistry. 27 (5): 372–379. doi:10.1111/ipd.12271. ISSN 1365-263X. PMID 27748991.
  7. ^ Leal, Soraya C.; Oliveira, Tereza Raquel Mourão; Ribeiro, Ana Paula Dias (September 2017). "Do parents and children perceive molar-incisor hypomineralization as an oral health problem?". International Journal of Paediatric Dentistry. 27 (5): 372–379. doi:10.1111/ipd.12271. ISSN 1365-263X. PMID 27748991.
  8. ^ Weerheijm, K. L. (September 2003). "Molar incisor hypomineralisation (MIH)". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 114–120. ISSN 1591-996X. PMID 14529330.
  9. ^ Jalevik, B (Jun 1 2010). "Prevalence and diagnosis of molar-incisor-hypomineralisation (MIH): a systematic review". european archives of paediatric dentistry. European Archives of Paediatric Dentistry – via the free library. {{cite journal}}: Check date values in: |date= (help)CS1 maint: date and year (link)
  10. ^ "Shibboleth Authentication Request". onlinelibrary.wiley.com.libezproxy.dundee.ac.uk. Retrieved 2017-10-27.
  11. ^ Jackson, D. (1961-12-01). "A clinical study of non-endemic mottling of enamel". Archives of Oral Biology. 5 (3): 212–223. doi:10.1016/0003-9969(61)90059-0.
  12. ^ Jälevik, B.; Norén, J.g. (2000-12-01). "Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors". International Journal of Paediatric Dentistry. 10 (4): 278–289. doi:10.1046/j.1365-263x.2000.00210.x. ISSN 1365-263X.
  13. ^ Johnsen, D; Krejci, C (January 1 1984). "Distribution of Enamel Defects and the Association with Respiratory Distress in Very Low Birthweight Infants". journal of dental research – via SAGE journals. {{cite journal}}: Check date values in: |date= (help)CS1 maint: date and year (link)
  14. ^ Weerheijm, K. L.; Duggal, M.; Mejàre, I.; Papagiannoulis, L.; Koch, G.; Martens, L. C.; Hallonsten, A.-L. (September 2003). "Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 110–113. ISSN 1591-996X. PMID 14529329.
  15. ^ Jälevik, B.; Norén, J. G. (December 2000). "Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors". International Journal of Paediatric Dentistry. 10 (4): 278–289. ISSN 0960-7439. PMID 11310241.
  16. ^ Elfrink, Marlies E. C.; Schuller, Annemarie A.; Veerkamp, Jaap S. J.; Poorterman, Jan H. G.; Moll, Henriette A.; ten Cate, Bob J. M. (March 2010). "Factors increasing the caries risk of second primary molars in 5-year-old Dutch children". International Journal of Paediatric Dentistry. 20 (2): 151–157. doi:10.1111/j.1365-263X.2009.01026.x. ISSN 1365-263X. PMID 20384830.
  17. ^ a b c d e f Silva MJ, Kilpatrick N, Crombie F; et al. (2017). "What's New in Molar Incisor Hypomineralization?". Dental Update. 44: 100–106. {{cite journal}}: Explicit use of et al. in: |last= (help)CS1 maint: multiple names: authors list (link) Cite error: The named reference ":2" was defined multiple times with different content (see the help page).
  18. ^ Fagrell, Tobias G.; Lingström, Peter; Olsson, Stina; Steiniger, Frank; Norén, Jörgen G. (2008-09-01). "Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization". International Journal of Paediatric Dentistry. 18 (5): 333–340. doi:10.1111/j.1365-263X.2007.00908.x. ISSN 1365-263X.
  19. ^ Kopperud, Simen E.; Pedersen, Cecilie Gravdahl; Espelid, Ivar (2016-07-04). "Treatment decisions on Molar-Incisor Hypomineralization (MIH) by Norwegian dentists – a questionnaire study". BMC Oral Health. 17: 3. doi:10.1186/s12903-016-0237-5. ISSN 1472-6831.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Fayle, S. A. (September 2003). "Molar incisor hypomineralisation: restorative management". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 121–126. ISSN 1591-996X. PMID 14529331.
  21. ^ Jälevik, B.; Klingberg, G. A. (January 2002). "Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars". International Journal of Paediatric Dentistry. 12 (1): 24–32. ISSN 0960-7439. PMID 11853245.
  22. ^ Croll, T. P. (August 2000). "Restorative options for malformed permanent molars in children". Compendium of Continuing Education in Dentistry (Jamesburg, N.J.: 1995). 21 (8): 676–678, 680, 682. ISSN 1548-8578. PMID 11199658.
  23. ^ Ueno, Takahiro; Tsuchiya, Hironori; Mizogami, Maki; Takakura, Ko (2008-11-13). "Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite". Journal of inflammation research. 1: 41–48. ISSN 1178-7031. PMC 3218719. PMID 22096346.{{cite journal}}: CS1 maint: PMC format (link)
  24. ^ Cabasse, C.; Marie-Cousin, A.; Huet, A.; Sixou, J. L. (March 2015). "Computer-assisted intraosseous anaesthesia for molar and incisor hypomineralisation teeth. A preliminary study". Odonto-Stomatologie Tropicale = Tropical Dental Journal. 38 (149): 5–9. ISSN 0251-172X. PMID 26058304.
  25. ^ Mastroberardino, Stefano; Campus, Guglielmo; Strohmenger, Laura; Villa, Alessandro; Cagetti, Maria Grazia (2012). "An Innovative Approach to Treat Incisors Hypomineralization (MIH): A Combined Use of Casein Phosphopeptide-Amorphous Calcium Phosphate and Hydrogen Peroxide—A Case Report". Case Reports in Dentistry. 2012. doi:10.1155/2012/379593. ISSN 2090-6447. PMC 3513726. PMID 23243519.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  26. ^ Rodd, H. D.; Abdul-Karim, A.; Yesudian, G.; O'Mahony, J.; Marshman, Z. (March 2011). "Seeking children's perspectives in the management of visible enamel defects". International Journal of Paediatric Dentistry. 21 (2): 89–95. doi:10.1111/j.1365-263X.2010.01096.x. ISSN 1365-263X. PMID 20738432.
  27. ^ Wong, F. (2004-05-22). "Research Summary: Study of enamel density". British Dental Journal. 196 (10): 625–625. doi:10.1038/sj.bdj.4811299. ISSN 0007-0610.
  28. ^ Fragelli, Camila Maria Bullio; Souza, Juliana Feltrin de; Jeremias, Fabiano; Cordeiro, Rita de Cássia Loiola; Santos-Pinto, Lourdes (2015). "Molar incisor hypomineralization (MIH): conservative treatment management to restore affected teeth". Brazilian Oral Research. 29. doi:10.1590/1807-3107BOR-2015.vol29.0076. ISSN 1807-3107. PMID 26083091.
  29. ^ Weerheijm, K. L. (January 2004). "Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management". Dental Update. 31 (1): 9–12. ISSN 0305-5000. PMID 15000003.
  30. ^ Allam, Eman; Ghoneima, Ahmed; Kula, Katherine. "Definition and scoring system of molar incisor hypomineralization: A review". Dental, Oral and Craniofacial Research. 3 (2). doi:10.15761/docr.1000197.
  31. ^ Bhaskar, ShubhaArehalli; Hegde, Sapna (2014-10-01). "Molar-incisor hypomineralization: Prevalence, severity and clinical characteristics in 8- to 13-year-old children of Udaipur, India". Journal of Indian Society of Pedodontics and Preventive Dentistry. 32 (4). doi:10.4103/0970-4388.140960.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  32. ^ Weerheijm, K. L.; Duggal, M.; Mejàre, I.; Papagiannoulis, L.; Koch, G.; Martens, L. C.; Hallonsten, A.-L. (September 2003). "Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 110–113. ISSN 1591-996X. PMID 14529329.
  33. ^ Oliver, Kelly; Messer, Louise B.; Manton, David J.; Kan, Karen; Ng, Fiona; Olsen, Christopher; Sheahan, John; Silva, Margarita; Chawla, Narisha (2014-03-01). "Distribution and severity of molar hypomineralisation: trial of a new severity index". International Journal of Paediatric Dentistry. 24 (2): 131–151. doi:10.1111/ipd.12040. ISSN 1365-263X.
  34. ^ Jälevik, B.; Klingberg, G. A. (January 2002). "Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars". International Journal of Paediatric Dentistry. 12 (1): 24–32. ISSN 0960-7439. PMID 11853245.
  35. ^ Lygidakis, N. A. (April 2010). "Treatment modalities in children with teeth affected by molar-incisor enamel hypomineralisation (MIH): A systematic review". European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry. 11 (2): 65–74. ISSN 1818-6300. PMID 20403300.
  36. ^ Willmott, N. S.; Bryan, R. a. E.; Duggal, M. S. (December 2008). "Molar-incisor-hypomineralisation: a literature review". European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry. 9 (4): 172–179. ISSN 1818-6300. PMID 19054470.
  37. ^ Shen, P.; Cai, F.; Nowicki, A.; Vincent, J.; Reynolds, E. C. (December 2001). "Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate". Journal of Dental Research. 80 (12): 2066–2070. doi:10.1177/00220345010800120801. ISSN 0022-0345. PMID 11808763.
  38. ^ Azarpazhooh, Amir; Limeback, Hardy (July 2008). "Clinical efficacy of casein derivatives: a systematic review of the literature". Journal of the American Dental Association (1939). 139 (7): 915–924, quiz 994–995. ISSN 0002-8177. PMID 18594077.
  39. ^ Wright, J. Timothy (May 2002). "The etch-bleach-seal technique for managing stained enamel defects in young permanent incisors". Pediatric Dentistry. 24 (3): 249–252. ISSN 0164-1263. PMID 12064500.
  40. ^ Attal, Jean-Pierre; Atlan, Anthony; Denis, Maud; Vennat, Elsa; Tirlet, Gilles (March 2014). "White spots on enamel: treatment protocol by superficial or deep infiltration (part 2)". International Orthodontics. 12 (1): 1–31. doi:10.1016/j.ortho.2013.12.011. ISSN 1879-680X. PMID 24503373.
  41. ^ Jälevik, B.; Norén, J. G. (December 2000). "Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors". International Journal of Paediatric Dentistry. 10 (4): 278–289. ISSN 0960-7439. PMID 11310241.
  42. ^ Fayle, S. A. (September 2003). "Molar incisor hypomineralisation: restorative management". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 121–126. ISSN 1591-996X. PMID 14529331.
  43. ^ Joiner, Andrew (August 2006). "The bleaching of teeth: a review of the literature". Journal of Dentistry. 34 (7): 412–419. doi:10.1016/j.jdent.2006.02.002. ISSN 0300-5712. PMID 16569473.
  44. ^ Wray, A.; Welbury, R.; Faculty of Dental Surgery, Royal College of Surgeons (July 2001). "UK National Clinical Guidelines in Paediatric Dentistry: Treatment of intrinsic discoloration in permanent anterior teeth in children and adolescents". International Journal of Paediatric Dentistry. 11 (4): 309–315. ISSN 0960-7439. PMID 11570449.
  45. ^ Wong, F. S. L.; Winter, G. B. (2002-08-10). "Effectiveness of microabrasion technique for improvement of dental aesthetics". British Dental Journal. 193 (3): 155–158. doi:10.1038/sj.bdj.4801511a. ISSN 0007-0610. PMID 12213009.
  46. ^ Sapir, Shabtai; Shapira, Joseph (July 2007). "Clinical solutions for developmental defects of enamel and dentin in children". Pediatric Dentistry. 29 (4): 330–336. ISSN 0164-1263. PMID 17867401.
  47. ^ Welbury, R. R. (April 1991). "A clinical study of a microfilled composite resin for labial veneers". International Journal of Paediatric Dentistry. 1 (1): 9–15. ISSN 0960-7439. PMID 1931891.
  48. ^ Gandhi, Shan; Crawford, Peter; Shellis, Peter (November 2012). "The use of a 'bleach-etch-seal' deproteinization technique on MIH affected enamel". International Journal of Paediatric Dentistry. 22 (6): 427–434. doi:10.1111/j.1365-263X.2011.01212.x. ISSN 1365-263X. PMID 22251382.
  49. ^ Mathu-Muju, Kavita; Wright, J. Timothy (November 2006). "Diagnosis and treatment of molar incisor hypomineralization". Compendium of Continuing Education in Dentistry (Jamesburg, N.J.: 1995). 27 (11): 604–610, quiz 611. ISSN 1548-8578. PMID 17133930.
  50. ^ Mejàre, I.; Bergman, E.; Grindefjord, M. (January 2005). "Hypomineralized molars and incisors of unknown origin: treatment outcome at age 18 years". International Journal of Paediatric Dentistry. 15 (1): 20–28. doi:10.1111/j.1365-263X.2005.00599.x. ISSN 0960-7439. PMID 15663441.
  51. ^ Lygidakis, N. A.; Chaliasou, A.; Siounas, G. (September 2003). "Evaluation of composite restorations in hypomineralised permanent molars: a four year clinical study". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 143–148. ISSN 1591-996X. PMID 14529336.
  52. ^ a b William, Vanessa; Burrow, Michael F.; Palamara, Joseph E. A.; Messer, Louise B. (May 2006). "Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems". Pediatric Dentistry. 28 (3): 233–241. ISSN 0164-1263. PMID 16805355.
  53. ^ Fayle, S. A. (September 2003). "Molar incisor hypomineralisation: restorative management". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 121–126. ISSN 1591-996X. PMID 14529331.
  54. ^ Weerheijm, K. L. (January 2004). "Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management". Dental Update. 31 (1): 9–12. ISSN 0305-5000. PMID 15000003.
  55. ^ Zagdwon, A. M.; Fayle, S. A.; Pollard, M. A. (September 2003). "A prospective clinical trial comparing preformed metal crowns and cast restorations for defective first permanent molars". European Journal of Paediatric Dentistry: Official Journal of European Academy of Paediatric Dentistry. 4 (3): 138–142. ISSN 1591-996X. PMID 14529335.
  56. ^ Innes, N. P. T.; Stirrups, D. R.; Evans, D. J. P.; Hall, N.; Leggate, M. (2006-04-22). "A novel technique using preformed metal crowns for managing carious primary molars in general practice - a retrospective analysis". British Dental Journal. 200 (8): 451–454, discussion 444. doi:10.1038/sj.bdj.4813466. ISSN 0007-0610. PMID 16703041.
  57. ^ Bell, S. J.; Morgan, A. G.; Marshman, Z.; Rodd, H. D. (October 2010). "Child and parental acceptance of preformed metal crowns". European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry. 11 (5): 218–224. ISSN 1818-6300. PMID 20932394.
  58. ^ Koch, M. J.; García-Godoy, F. (September 2000). "The clinical performance of laboratory-fabricated crowns placed on first permanent molars with developmental defects". Journal of the American Dental Association (1939). 131 (9): 1285–1290. ISSN 0002-8177. PMID 10986829.