Nitrospira: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎top: punct., template hat
Timochui (talk | contribs)
Inserted edit
Line 7: Line 7:
{{confuse2|[[Desulfoarculaceae|Nitrospina]] bacteria}}
{{confuse2|[[Desulfoarculaceae|Nitrospina]] bacteria}}


'''''Nitrospira''''' is a genus of [[bacterium|bacteria]] in the phylum [[Nitrospirae]]. The first member of this genus was described 1986 by Watson et al. isolated from the Gulf of Maine. The bacterium was named ''[[Nitrospira marina]]''.<ref>{{cite journal |author1=Stanley W. Watson |author2=Eberhard Bock |author3=Frederica W. Valois |author4=John B. Waterbury |author5=Ursula Schlosser | title = Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. | journal = Arch Microbiol | volume = 144 | issue = 1 | pages = 1–7 | year = 1986 | doi = 10.1007/BF00454947}}</ref> The second member of this genus was discovered in 1995 from a corroded iron pipe in a Moscow heating system. The bacterium was named ''[[Nitrospira moscoviensis]]'' and is a [[gram-negative]] [[nitrite]]-oxidising organism with a helical to vibroid morphology 0.9–2.2 × 0.2–0.4 [[micrometre]]s in size.<ref>{{cite journal |vauthors=Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E | title = A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. | journal = Arch Microbiol | volume = 164 | issue = 1 | pages = 16–23 | year = 1995 | pmid = 7646315 | doi = 10.1007/BF02568729}}</ref> Members of Nitrospira with the capabilities to perform complete [[nitrification]] ([[Comammox]] bacteria) has also been discovered.<ref>{{Cite journal|title = Complete nitrification by a single microorganism|url = http://www.nature.com/doifinder/10.1038/nature16459|journal = Nature|doi = 10.1038/nature16459|first = Maartje A. H. J.|last = van Kessel|first2 = Daan R.|last2 = Speth|first3 = Mads|last3 = Albertsen|first4 = Per H.|last4 = Nielsen|first5 = Huub J. M. Op den|last5 = Camp|first6 = Boran|last6 = Kartal|first7 = Mike S. M.|last7 = Jetten|first8 = Sebastian|last8 = Lücker|pmid=26610025|pmc=4878690|volume=528|year=2015|pages=555–9}}</ref><ref>{{Cite journal|title = Complete nitrification by Nitrospira bacteria|url = http://www.nature.com/doifinder/10.1038/nature16461|journal = Nature|doi = 10.1038/nature16461|first = Holger|last = Daims|first2 = Elena V.|last2 = Lebedeva|first3 = Petra|last3 = Pjevac|first4 = Ping|last4 = Han|first5 = Craig|last5 = Herbold|first6 = Mads|last6 = Albertsen|first7 = Nico|last7 = Jehmlich|first8 = Marton|last8 = Palatinszky|first9 = Julia|last9 = Vierheilig|pmid=26610024|volume=528|year=2015|pages=504–9}}</ref>
'''''Nitrospira''''' (from Latin: nitro, meaning "nitrate" and Greek: spira, meaning "spiral") translate into “a nitrate spiral” is a genus of bacteria within the [[Monophyly|monophyletic clade]]<ref name="Isolation of sublineage I by a novel cultivation strategy">{{cite journal|last1=Fujitani|first1=Hirotsugu|last2=Ushiki|first2=Norisuke|last3=Tsuneda|first3=Satoshi|last4=Aoi|first4=Yoshiteru|title=Isolation of sublineage I  by a novel cultivation strategy|journal=Environmental Microbiology|date=October 2014|volume=16|issue=10|pages=3030–3040|doi=10.1111/1462-2920.12248}}</ref> of [[Nitrospirae]] phylum. The first member of this genus was described 1986 by Watson et al. isolated from the Gulf of Maine. The bacterium was named ''[[Nitrospira marina]]''.<ref>{{cite journal |author1=Stanley W. Watson |author2=Eberhard Bock |author3=Frederica W. Valois |author4=John B. Waterbury |author5=Ursula Schlosser | title = Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. | journal = Arch Microbiol | volume = 144 | issue = 1 | pages = 1–7 | year = 1986 | doi = 10.1007/BF00454947}}</ref>. Populations were initially thought to be limited to marine ecosystems, but it was later discovered to be well-suited for numerous habitats, including [[activated sludge]] of [[wastewater treatment]] systems<ref name="Microbial community composition and function in wastewater treatment plants">{{cite journal|last1=Wagner|first1=Michael|last2=Loy|first2=Alexander|last3=Nogueira|first3=Regina|last4=Purkhold|first4=Ulrike|last5=Lee|first5=Natuschka|last6=Daims|first6=Holger|title=Microbial community composition and function in wastewater treatment plants|journal=Antonie van Leeuwenhoek|date=2002|volume=81|issue=1/4|pages=665–680|doi=10.1023/A:1020586312170}}</ref>, natural biological marine settings (such as the Seine River in France<ref name="Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria">{{cite journal|last1=Hovanec|first1=Timothy A.|last2=Taylor|first2=Lance T.|last3=Blakis|first3=Andrew|last4=Delong|first4=Edward F.|title=Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria|journal=Applied and Environmental Microbiology|date=1998|volume=64|issue=1|pages=258–264|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124703/?tool=pmcentrez|issn=0099-2240}}</ref> and beaches in Cape Cod<ref name="Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium">{{cite journal|last1=Watson|first1=Stanley W.|last2=Bock|first2=Eberhard|last3=Valois|first3=Frederica W.|last4=Waterbury|first4=John B.|last5=Schlosser|first5=Ursula|title=Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium|journal=Archives of Microbiology|date=February 1986|volume=144|issue=1|pages=1–7|doi=10.1007/BF00454947}}</ref>), water circulation [[biofilter|biofilters]] in aquarium tanks<ref name="Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria" />, terrestrial systems<ref name="Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium" />, fresh and salt water ecosystems, and hot springs<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus">{{cite journal|last1=Koch|first1=Hanna|last2=Lücker|first2=Sebastian|last3=Albertsen|first3=Mads|last4=Kitzinger|first4=Katharina|last5=Herbold|first5=Craig|last6=Spieck|first6=Eva|last7=Nielsen|first7=Per Halkjaer|last8=Wagner|first8=Michael|last9=Daims|first9=Holger|title=Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus|journal=Proceedings of the National Academy of Sciences|date=8 September 2015|volume=112|issue=36|pages=11371–11376|doi=10.1073/pnas.1506533112}}</ref>.
Nitrospira is an ubiquitous bacterium that plays a role in the nitrogen cycle<ref name="A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria">{{cite journal|last1=Lucker|first1=S.|last2=Wagner|first2=M.|last3=Maixner|first3=F.|last4=Pelletier|first4=E.|last5=Koch|first5=H.|last6=Vacherie|first6=B.|last7=Rattei|first7=T.|last8=Damste|first8=J. S. S.|last9=Spieck|first9=E.|last10=Le Paslier|first10=D.|last11=Daims|first11=H.|title=A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria|journal=Proceedings of the National Academy of Sciences|date=12 July 2010|volume=107|issue=30|pages=13479–13484|doi=10.1073/pnas.1003860107}}</ref> by performing nitrite oxidation in the second step of nitrification<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus" />. In addition, members of Nitrospira with the capabilities to perform complete [[nitrification]] ([[Comammox]] bacteria) has also been discovered<ref>{{Cite journal|last=van Kessel|first=Maartje A. H. J.|last2=Speth|first2=Daan R.|last3=Albertsen|first3=Mads|last4=Nielsen|first4=Per H.|last5=Camp|first5=Huub J. M. Op den|last6=Kartal|first6=Boran|last7=Jetten|first7=Mike S. M.|last8=Lücker|first8=Sebastian|year=2015|title=Complete nitrification by a single microorganism|url=http://www.nature.com/doifinder/10.1038/nature16459|journal=Nature|volume=528|pages=555–9|doi=10.1038/nature16459|pmc=4878690|pmid=26610025}}</ref><ref>{{Cite journal|last=Daims|first=Holger|last2=Lebedeva|first2=Elena V.|last3=Pjevac|first3=Petra|last4=Han|first4=Ping|last5=Herbold|first5=Craig|last6=Albertsen|first6=Mads|last7=Jehmlich|first7=Nico|last8=Palatinszky|first8=Marton|last9=Vierheilig|first9=Julia|year=2015|title=Complete nitrification by Nitrospira bacteria|url=http://www.nature.com/doifinder/10.1038/nature16461|journal=Nature|volume=528|pages=504–9|doi=10.1038/nature16461|pmid=26610024}}</ref>. However, due to their difficulty to be cultivated in laboratory settings, the entire genome was only sequenced in one species, ''[[Nitrospira defluvii]]''<ref name="A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria" />.

==Morphology==
For the following description, ''[[Nitrospira moscoviensis]]'' will be representative of the Nitrospira genus. Nitrospira is a [[gram-negative]] [[nitrite]]-oxidising organism with a helical to vibroid morphology (0.9–2.2 × 0.2–0.4 [[micrometre]]s in size)<ref name="A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship">{{cite journal|last1=Ehrich|first1=Silke|last2=Behrens|first2=Doris|last3=Lebedeva|first3=Elena|last4=Ludwig|first4=Wolfgang|last5=Bock|first5=Eberhard|title=A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship|journal=Archives of Microbiology|date=July 1995|volume=164|issue=1|pages=16–23|doi=10.1007/BF02568729}}</ref>. They are non-[[planktonic]] organisms that reside as clumps, known as aggregates, in [[biofilm|biofilms]]<ref name="Isolation of sublineage I by a novel cultivation strategy" />. Visualization using [[Transmission electron microscopy]] (TEM) confirms star-like protrusions on the [[Bacterial outer membrane|outer membrane]] (6-8 nm thick). The [[Periplasm|periplasmic space]] is exceptionally wide (34-41 nm thick)<ref name="Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium" />, which provides space to accommodate electron-rich molecules<ref name="A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water">{{cite journal|last1=Haaijer|first1=Suzanne C. M.|last2=Ji|first2=Ke|last3=Niftrik|first3=Laura van|last4=Hoischen|first4=Alexander|last5=Speth|first5=Daan|last6=Jetten|first6=Mike S. M.|last7=Damsté|first7=Jaap S. Sinninghe|last8=Op den Camp|first8=Huub J. M.|title=A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water|journal=Frontiers in Microbiology|date=2013|volume=4|doi=10.3389/fmicb.2013.00060}}</ref>. Electron-deprived structures are located in the cytosol and are believed to be [[glycogen]] storage vesicles; [[polyhydroxybutyrate]] and [[polyphosphate]] granules are also identified in the cytoplasm<ref name="A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship" />. DNA analysis determined 56.9 +/- 0.4 mol% of the DNA to be [[guanine]] and [[cytosine]] base pairs<ref name="A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship" />.

==General Metabolism==
Nitrospira are capable of aerobic hydrogen oxidation<ref name="Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation">{{cite journal|last1=Koch|first1=H.|last2=Galushko|first2=A.|last3=Albertsen|first3=M.|last4=Schintlmeister|first4=A.|last5=Gruber-Dorninger|first5=C.|last6=Lucker|first6=S.|last7=Pelletier|first7=E.|last8=Le Paslier|first8=D.|last9=Spieck|first9=E.|last10=Richter|first10=A.|last11=Nielsen|first11=P. H.|last12=Wagner|first12=M.|last13=Daims|first13=H.|title=Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation|journal=Science|date=28 August 2014|volume=345|issue=6200|pages=1052–1054|doi=10.1126/science.1256985}}</ref> and nitrite oxidation<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus" /> to obtain electrons, but high concentrations of nitrite have shown to inhibit their growth<ref name="Isolation of sublineage I by a novel cultivation strategy" />. The optimal temperature for nitrite oxidation and growth in ''[[Nitrospira moscoviensis]]'' is 39°C (can range from 33-44°C) at a pH range of 7.6-8.0<ref name="A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship" /> Despite being commonly classified as obligate [[lithotroph|chemolithotrophs]]<ref name="Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium" />, some are capable of [[mixotroph|mixotrophy]]<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus" />. For instance, under different environments, Nitrospira can choose to assimilate carbon by [[carbon fixation]]<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus" /> or by consuming organic molecules ([[glycerol]], [[pyruvate]], or [[formate]]<ref name="In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants">{{cite journal|last1=Daims|first1=H.|last2=Nielsen|first2=J. L.|last3=Nielsen|first3=P. H.|last4=Schleifer|first4=K.-H.|last5=Wagner|first5=M.|title=In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants|journal=Applied and Environmental Microbiology|date=1 November 2001|volume=67|issue=11|pages=5273–5284|doi=10.1128/AEM.67.11.5273-5284.2001}}</ref>). New studies also show that Nitrospira can use [[urea]] as a source of nutrient. [[Urease]] encoded within their genome can break urea down to {{CO2}} and [[ammonia]]. The {{CO2}} can be assimilated by [[anabolism]] while the ammonia and organic by-product released by Nitrospira allow [[Nitrifying bacteria|ammonium oxidizers]]<ref name="Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus" /> and other microbes to co-exist in the same [[microenvironment]]<ref name="Isolation of sublineage I by a novel cultivation strategy" />.




==See also==
==See also==
Line 13: Line 22:


== References ==
== References ==
{{reflist|2}}
{{reflist}}


==External links==
==External links==

Revision as of 02:10, 19 November 2017

Nitrospira
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Nitrospirota
Class: Nitrospira
Order: Nitrospirales
Family: Nitrospiraceae
Genus: Nitrospira
Species

N. moscoviensis
N. marina

Template:Confuse2

Nitrospira (from Latin: nitro, meaning "nitrate" and Greek: spira, meaning "spiral") translate into “a nitrate spiral” is a genus of bacteria within the monophyletic clade[1] of Nitrospirae phylum. The first member of this genus was described 1986 by Watson et al. isolated from the Gulf of Maine. The bacterium was named Nitrospira marina.[2]. Populations were initially thought to be limited to marine ecosystems, but it was later discovered to be well-suited for numerous habitats, including activated sludge of wastewater treatment systems[3], natural biological marine settings (such as the Seine River in France[4] and beaches in Cape Cod[5]), water circulation biofilters in aquarium tanks[4], terrestrial systems[5], fresh and salt water ecosystems, and hot springs[6]. Nitrospira is an ubiquitous bacterium that plays a role in the nitrogen cycle[7] by performing nitrite oxidation in the second step of nitrification[6]. In addition, members of Nitrospira with the capabilities to perform complete nitrification (Comammox bacteria) has also been discovered[8][9]. However, due to their difficulty to be cultivated in laboratory settings, the entire genome was only sequenced in one species, Nitrospira defluvii[7].

Morphology

For the following description, Nitrospira moscoviensis will be representative of the Nitrospira genus. Nitrospira is a gram-negative nitrite-oxidising organism with a helical to vibroid morphology (0.9–2.2 × 0.2–0.4 micrometres in size)[10]. They are non-planktonic organisms that reside as clumps, known as aggregates, in biofilms[1]. Visualization using Transmission electron microscopy (TEM) confirms star-like protrusions on the outer membrane (6-8 nm thick). The periplasmic space is exceptionally wide (34-41 nm thick)[5], which provides space to accommodate electron-rich molecules[11]. Electron-deprived structures are located in the cytosol and are believed to be glycogen storage vesicles; polyhydroxybutyrate and polyphosphate granules are also identified in the cytoplasm[10]. DNA analysis determined 56.9 +/- 0.4 mol% of the DNA to be guanine and cytosine base pairs[10].

General Metabolism

Nitrospira are capable of aerobic hydrogen oxidation[12] and nitrite oxidation[6] to obtain electrons, but high concentrations of nitrite have shown to inhibit their growth[1]. The optimal temperature for nitrite oxidation and growth in Nitrospira moscoviensis is 39°C (can range from 33-44°C) at a pH range of 7.6-8.0[10] Despite being commonly classified as obligate chemolithotrophs[5], some are capable of mixotrophy[6]. For instance, under different environments, Nitrospira can choose to assimilate carbon by carbon fixation[6] or by consuming organic molecules (glycerol, pyruvate, or formate[13]). New studies also show that Nitrospira can use urea as a source of nutrient. Urease encoded within their genome can break urea down to CO2 and ammonia. The CO2 can be assimilated by anabolism while the ammonia and organic by-product released by Nitrospira allow ammonium oxidizers[6] and other microbes to co-exist in the same microenvironment[1].


See also

References

  1. ^ a b c d Fujitani, Hirotsugu; Ushiki, Norisuke; Tsuneda, Satoshi; Aoi, Yoshiteru (October 2014). "Isolation of sublineage I  by a novel cultivation strategy". Environmental Microbiology. 16 (10): 3030–3040. doi:10.1111/1462-2920.12248.
  2. ^ Stanley W. Watson; Eberhard Bock; Frederica W. Valois; John B. Waterbury; Ursula Schlosser (1986). "Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium". Arch Microbiol. 144 (1): 1–7. doi:10.1007/BF00454947.
  3. ^ Wagner, Michael; Loy, Alexander; Nogueira, Regina; Purkhold, Ulrike; Lee, Natuschka; Daims, Holger (2002). "Microbial community composition and function in wastewater treatment plants". Antonie van Leeuwenhoek. 81 (1/4): 665–680. doi:10.1023/A:1020586312170.
  4. ^ a b Hovanec, Timothy A.; Taylor, Lance T.; Blakis, Andrew; Delong, Edward F. (1998). "Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria". Applied and Environmental Microbiology. 64 (1): 258–264. ISSN 0099-2240.
  5. ^ a b c d Watson, Stanley W.; Bock, Eberhard; Valois, Frederica W.; Waterbury, John B.; Schlosser, Ursula (February 1986). "Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium". Archives of Microbiology. 144 (1): 1–7. doi:10.1007/BF00454947.
  6. ^ a b c d e f Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger (8 September 2015). "Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus". Proceedings of the National Academy of Sciences. 112 (36): 11371–11376. doi:10.1073/pnas.1506533112.
  7. ^ a b Lucker, S.; Wagner, M.; Maixner, F.; Pelletier, E.; Koch, H.; Vacherie, B.; Rattei, T.; Damste, J. S. S.; Spieck, E.; Le Paslier, D.; Daims, H. (12 July 2010). "A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria". Proceedings of the National Academy of Sciences. 107 (30): 13479–13484. doi:10.1073/pnas.1003860107.
  8. ^ van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads; Nielsen, Per H.; Camp, Huub J. M. Op den; Kartal, Boran; Jetten, Mike S. M.; Lücker, Sebastian (2015). "Complete nitrification by a single microorganism". Nature. 528: 555–9. doi:10.1038/nature16459. PMC 4878690. PMID 26610025.
  9. ^ Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra; Han, Ping; Herbold, Craig; Albertsen, Mads; Jehmlich, Nico; Palatinszky, Marton; Vierheilig, Julia (2015). "Complete nitrification by Nitrospira bacteria". Nature. 528: 504–9. doi:10.1038/nature16461. PMID 26610024.
  10. ^ a b c d Ehrich, Silke; Behrens, Doris; Lebedeva, Elena; Ludwig, Wolfgang; Bock, Eberhard (July 1995). "A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship". Archives of Microbiology. 164 (1): 16–23. doi:10.1007/BF02568729.
  11. ^ Haaijer, Suzanne C. M.; Ji, Ke; Niftrik, Laura van; Hoischen, Alexander; Speth, Daan; Jetten, Mike S. M.; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M. (2013). "A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water". Frontiers in Microbiology. 4. doi:10.3389/fmicb.2013.00060.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Koch, H.; Galushko, A.; Albertsen, M.; Schintlmeister, A.; Gruber-Dorninger, C.; Lucker, S.; Pelletier, E.; Le Paslier, D.; Spieck, E.; Richter, A.; Nielsen, P. H.; Wagner, M.; Daims, H. (28 August 2014). "Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation". Science. 345 (6200): 1052–1054. doi:10.1126/science.1256985.
  13. ^ Daims, H.; Nielsen, J. L.; Nielsen, P. H.; Schleifer, K.-H.; Wagner, M. (1 November 2001). "In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants". Applied and Environmental Microbiology. 67 (11): 5273–5284. doi:10.1128/AEM.67.11.5273-5284.2001.

External links