Jump to content

Christopher Voigt: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 36: Line 36:
* Computational tools to design precision genetic parts, based on biophysics, bioinformatics, and machine learning.<ref>{{cite journal |vauthors=Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA|title=Characterization of 582 natural and synthetic terminators and quantification of their design constraints |journal=Nature |volume=10 |issue=7 |pages=659-64|year=2013 |pmid=23727987 |doi=10.1038/nmeth.2515 }}</ref><ref>{{cite journal |vauthors=Salis H, Mirsky E, Voigt CA |title=Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression |journal=Nature Biotechnology |volume=27 |issue=10 |pages=946-50|year=2009 |doi=10.1038/nbt.1568|pmc=2782888 }}</ref>
* Computational tools to design precision genetic parts, based on biophysics, bioinformatics, and machine learning.<ref>{{cite journal |vauthors=Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA|title=Characterization of 582 natural and synthetic terminators and quantification of their design constraints |journal=Nature |volume=10 |issue=7 |pages=659-64|year=2013 |pmid=23727987 |doi=10.1038/nmeth.2515 }}</ref><ref>{{cite journal |vauthors=Salis H, Mirsky E, Voigt CA |title=Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression |journal=Nature Biotechnology |volume=27 |issue=10 |pages=946-50|year=2009 |doi=10.1038/nbt.1568|pmc=2782888 }}</ref>
* Therapeutic bacteria to navigate the human body and identify and correct disease states.<ref>{{cite journal |vauthors=Anderson JC, Clarke EJ, Arkin AP, Voigt CA|title=Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria |journal=Journal of Molecular Biology |volume=355 |issue=4 |pages=619-27|year=2006 |doi= 10.1016/j.jmb.2005.10.076|pmid= 16330045 }}</ref><ref>{{cite journal |vauthors=Mimee M, Tucker A, Voigt CA, Lu TK|title= Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota|journal=Cell Systems |volume=1 |issue=1 |pages=62-71|year=2015 |doi= 10.1016/j.cels.2015.06.001|pmc= 4762051 }}</ref>
* Therapeutic bacteria to navigate the human body and identify and correct disease states.<ref>{{cite journal |vauthors=Anderson JC, Clarke EJ, Arkin AP, Voigt CA|title=Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria |journal=Journal of Molecular Biology |volume=355 |issue=4 |pages=619-27|year=2006 |doi= 10.1016/j.jmb.2005.10.076|pmid= 16330045 }}</ref><ref>{{cite journal |vauthors=Mimee M, Tucker A, Voigt CA, Lu TK|title= Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota|journal=Cell Systems |volume=1 |issue=1 |pages=62-71|year=2015 |doi= 10.1016/j.cels.2015.06.001|pmc= 4762051 }}</ref>
* Redesign of the [[Nitrogen fixation|nitrogen fixation]] gene cluster to facilitate its transfer between organisms and control with synthetic sensors and circuits.<ref>{{cite journal |vauthors=Temme K, Zhao D, Voigt CA|title= Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca|journal=Proc. Natl. Acad. Sci. |volume=109 |issue=18 |pages=7085–7090|year=2012 |doi= 10.1073/pnas.1120788109|pmc= 3345007 }}</ref>
* Redesign of the [[Nitrogen fixation|nitrogen fixation]] gene cluster to facilitate its transfer between organisms and control with synthetic sensors and circuits.<ref>{{cite journal |vauthors=Temme K, Zhao D, Voigt CA|title= Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca|journal=Proc. Natl. Acad. Sci. |volume=109 |issue=18 |pages=7085–7090|year=2012 |doi= 10.1073/pnas.1120788109|pmc= 3345007 }}</ref><ref>{{cite journal |vauthors= Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff LBA, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA|title= Functional optimization of gene clusters by combinatorial design and assembly|journal= Nature Biotechnology |volume=32 |issue=12 |pages=1241-9|year=2014 |doi= 10.1038/nbt.3063|pmid= 25419741 }}</ref>
* Pharmaceutical discovery from large databases of DNA sequences, including the human gut microbiome, though high-throughput pathway recoding and DNA synthesis.<ref>{{cite journal |vauthors=Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA |title= Synthetic biology to access and expand nature's chemical diversity|journal=Nat Rev Microbiol|volume=14|issue=3|year=2016|pmid=26876034 |doi=10.1038/nrmicro.2015.24|pmc=5048682}}</ref><ref>{{cite journal |vauthors=Temme K, Zhao D, Voigt CA|title= Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca|journal=Proc. Natl. Acad. Sci. |volume=109|issue=18|pages=7085–7090|year=2012|doi=10.1073/pnas.1120788109|pmc=3345007}}</ref>
* Pharmaceutical discovery from large databases of DNA sequences, including the human gut microbiome, though high-throughput pathway recoding and DNA synthesis.<ref>{{cite journal |vauthors=Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA |title= Synthetic biology to access and expand nature's chemical diversity|journal=Nat Rev Microbiol|volume=14|issue=3|year=2016|pmid=26876034 |doi=10.1038/nrmicro.2015.24|pmc=5048682}}</ref><ref>{{cite journal |vauthors=Temme K, Zhao D, Voigt CA|title= Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca|journal=Proc. Natl. Acad. Sci. |volume=109|issue=18|pages=7085–7090|year=2012|doi=10.1073/pnas.1120788109|pmc=3345007}}</ref>

* Harnessing cells to produce materials, including spider silk, nylon-6, and DNA nanomaterials.<ref>{{cite journal |vauthors=Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA|title= Engineering the Salmonella type III secretion system to export spider silk monomers|journal=Mol Syst Biol|volume=5 |issue=309 |year=2009 |doi=10.1038/msb.2009.62|pmc= 2758716|pmid=19756048 }}</ref><ref>{{cite journal |vauthors=Zhou H, Vonk B, Roubos JA, Bovenberg RA, Voigt CA|title= Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor|journal=Nucleic Acids Res|volume=43 |issue=21 |pages=10560-70|year=2015 |doi= 10.1093/nar/gkv1071|pmid=26519464|pmc=4666358 }}</ref>
* Harnessing cells to produce materials, including spider silk, nylon-6, and DNA nanomaterials.<ref>{{cite journal |vauthors=Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA|title= Engineering the Salmonella type III secretion system to export spider silk monomers|journal=Mol Syst Biol|volume=5 |issue=309 |year=2009 |doi=10.1038/msb.2009.62|pmc= 2758716|pmid=19756048 }}</ref><ref>{{cite journal |vauthors=Zhou H, Vonk B, Roubos JA, Bovenberg RA, Voigt CA|title= Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor|journal=Nucleic Acids Res|volume=43 |issue=21 |pages=10560-70|year=2015 |doi= 10.1093/nar/gkv1071|pmid=26519464|pmc=4666358 }}</ref>


==External links==
==External links==
* [http://mit.edu/voigtlab/ Official site]
*[http://mit.edu/voigtlab/ Official Group Website]
*[http://pubs.acs.org/page/asbcd6/profile.html ACS Editor Profile]
*[http://pubs.acs.org/page/asbcd6/profile.html ACS Editor Profile]
*[https://vimeo.com/225379336 SB7.0 Talk: Foundational Tools & Engineering]
*[https://www.youtube.com/watch?v=lNttxYdGHs4 Synthetic Biology: Programming Living Bacteria]
*[https://www.youtube.com/watch?v=EtADBcxWpVg Decoding Synthetic Biology]
*[https://www.youtube.com/watch?v=VeawWryPFbs Engineering Biology]


==References==
==References==

Revision as of 08:47, 18 December 2017

Christopher A. Voigt
Born
NationalityU.S.
CitizenshipU.S.
Alma materUniversity of Michigan, California Institute of Technology, University of California - Berkeley
Scientific career
FieldsSynthetic Biology, Biotechnology, Genetic Engineering, Biological Engineering
InstitutionsMassachusetts Institute of Technology, UCSF
Doctoral advisorZhen-Gang Wang, Frances Arnold, Stephen Mayo, Adam P Arkin (Postdoctoral)

Christopher Voigt is an American synthetic biologist, molecular biophysicist, and engineer.[1][2]

Career

Voigt is the Daniel I.C. Wang Professor of Advanced Biotechnology in the Department of Biological Engineering at the Massachusetts Institute of Technology (MIT). He works in the developing field of synthetic biology. He is the Co-Director of the Synthetic Biology Center [3] at MIT and the co-Founder of the MIT-Broad Foundry [4][5].

His research interests focus on the programming of cells to perform coordinated, complex tasks for applications in medicine, agriculture, and industry. His works include:

  • Design of genetic circuits in bacteria, yeast and mammalian cells.[6][7][8][9][10][11][12] Encoded in DNA, these circuits implement computational operations inside of cells.
  • Software to program living cells (Cello), which is based on principles from electronic design automation and is based on Verilog.[13][14]
  • Genetically-encoded sensors that enables cells to respond chemicals, environmental cues, and colored light.[15][16][17]
  • Computational tools to design precision genetic parts, based on biophysics, bioinformatics, and machine learning.[18][19]
  • Therapeutic bacteria to navigate the human body and identify and correct disease states.[20][21]
  • Redesign of the nitrogen fixation gene cluster to facilitate its transfer between organisms and control with synthetic sensors and circuits.[22][23]
  • Pharmaceutical discovery from large databases of DNA sequences, including the human gut microbiome, though high-throughput pathway recoding and DNA synthesis.[24][25]
  • Harnessing cells to produce materials, including spider silk, nylon-6, and DNA nanomaterials.[26][27]

External links

References

  1. ^ Brogan, Jacob (3 April 2017). "Your Cheat-Sheet Guide to Synthetic Biology" – via Slate.
  2. ^ Kwok, Roberta (20 January 2010). "Five hard truths for synthetic biology". 463 (7279): 288–290. doi:10.1038/463288a – via www.nature.com. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^ "MIT Synthetic Biology Center".
  4. ^ "MIT-Broad Foundry".
  5. ^ "DARPA Gives MIT Lab $32 Million To Program Living Cells". Popular Science. 2015. Retrieved September 30, 2015.
  6. ^ Tamsir A, Tabor JJ, Voigt CA (2011). "Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'". Nature. 469 (7329): 212–5. doi:10.1038/nature09565. PMC 3904220. PMID 21150903.
  7. ^ Lou C, Stanton BC, Chen YJ, Munsky B, Voigt CA (2012). "Ribozyme-based insulator parts buffer synthetic circuits from genetic context". Nature Biotechnology. 30 (11): 1137–42. doi:10.1038/nbt.2401. PMC 3914141. PMID 23034349.
  8. ^ Brophy JA, Voigt CA (2014). "Principles of genetic circuit design". Nature Methods. 11 (5): 508–20. doi:10.1038/nmeth.2926. PMC 4230274. PMID 24781324.
  9. ^ Yang L, Nielsen AA, Fernandez-Rodriguez J, McClune CJ, Laub MT, Voigt CA (2014). "Permanent genetic memory with >1-byte capacity". Nature Methods. 11 (12): 1261–6. doi:10.1038/nmeth.3147. PMC 4245323. PMID 25344638.
  10. ^ Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012). "Genetic programs constructed from layered logic gates in single cells". Nature. 491 (7423): 249–53. doi:10.1038/nature11516. PMC 3904217.
  11. ^ Anderson JC, Voigt CA, Arkin AP (2007). "Environmental signal integration by a modular AND gate". Mol. Syst. Biol. 3 (1): 133. doi:10.1038/msb4100173. PMC 1964800. PMID 17700541.
  12. ^ "A programming language for living cells". Phys.org. Retrieved March 31, 2016.
  13. ^ "cellocad.org".
  14. ^ Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016). "Genetic circuit design automation". Science. 352 (6281). doi:10.1126/science.aac7341. PMID 27034378.
  15. ^ Fernandez-Rodriguez J, Moser F, Song M, Voigt CA (2017). "Engineering RGB color vision into Escherichia coli". Nature Chemical Biology. 13 (7): 706–8. doi:10.1038/nchembio.2390. PMID 28530708.
  16. ^ Levskaya A, Weiner OD, Lim WA, Voigt CA (2009). "Spatiotemporal control of cell signalling using a light-switchable protein interaction". Nature. 461 (7266): 997–1001. doi:10.1038/nature08446. PMC 2989900. PMID 19749742.
  17. ^ Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005). "Synthetic biology: engineering Escherichia coli to see light". Nature. 438 (7067): 441–2. doi:10.1038/nature04405. PMID 16306980.
  18. ^ Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA (2013). "Characterization of 582 natural and synthetic terminators and quantification of their design constraints". Nature. 10 (7): 659–64. doi:10.1038/nmeth.2515. PMID 23727987.
  19. ^ Salis H, Mirsky E, Voigt CA (2009). "Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression". Nature Biotechnology. 27 (10): 946–50. doi:10.1038/nbt.1568. PMC 2782888.
  20. ^ Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006). "Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria". Journal of Molecular Biology. 355 (4): 619–27. doi:10.1016/j.jmb.2005.10.076. PMID 16330045.
  21. ^ Mimee M, Tucker A, Voigt CA, Lu TK (2015). "Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota". Cell Systems. 1 (1): 62–71. doi:10.1016/j.cels.2015.06.001. PMC 4762051.
  22. ^ Temme K, Zhao D, Voigt CA (2012). "Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca". Proc. Natl. Acad. Sci. 109 (18): 7085–7090. doi:10.1073/pnas.1120788109. PMC 3345007.
  23. ^ Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff L, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA (2014). "Functional optimization of gene clusters by combinatorial design and assembly". Nature Biotechnology. 32 (12): 1241–9. doi:10.1038/nbt.3063. PMID 25419741. {{cite journal}}: Vancouver style error: initials in name 5 (help)
  24. ^ Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016). "Synthetic biology to access and expand nature's chemical diversity". Nat Rev Microbiol. 14 (3). doi:10.1038/nrmicro.2015.24. PMC 5048682. PMID 26876034.
  25. ^ Temme K, Zhao D, Voigt CA (2012). "Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca". Proc. Natl. Acad. Sci. 109 (18): 7085–7090. doi:10.1073/pnas.1120788109. PMC 3345007.
  26. ^ Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009). "Engineering the Salmonella type III secretion system to export spider silk monomers". Mol Syst Biol. 5 (309). doi:10.1038/msb.2009.62. PMC 2758716. PMID 19756048.
  27. ^ Zhou H, Vonk B, Roubos JA, Bovenberg RA, Voigt CA (2015). "Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor". Nucleic Acids Res. 43 (21): 10560–70. doi:10.1093/nar/gkv1071. PMC 4666358. PMID 26519464.