Cohn's theorem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎top: typo(s) fixed: usefull → useful using AWB
m Added reference. Minor changes for improve the introduction were made as well.
Line 1: Line 1:
{{context|date=March 2018}}
{{context|date=March 2018}}
In the theory od complex polynomials, Cohn's theorem<ref>{{Cite journal|last=Cohn|first=A|date=1922|title=Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise|url=https://link.springer.com/article/10.1007%2FBF01216772|journal=Math. Z.|volume=14|pages=110–148|via=}}</ref> states that a n-degree self-inversive polynomial <math>p_n(z)</math> has as many roots in the open unit disk <math>D =\{z \in \mathbb{C}: |z|<1\}</math> as the reciprocal polynomial of its derivative. For the proof, see as well the papers<ref>{{Cite journal|last=Bonsall|first=F. F.|last2=Marden|first2=Morris|date=1952|title=Zeros of self-inversive polynomials|url=http://www.ams.org/home/page/|journal=Proceedings of the American Mathematical Society|language=en-US|volume=3|issue=3|pages=471–475|doi=10.2307/2031905|issn=0002-9939}}</ref><ref>{{Cite journal|last=Ancochea|first=Germán|date=1953|title=Zeros of self-inversive polynomials|url=http://www.ams.org/home/page/|journal=Proceedings of the American Mathematical Society|language=en-US|volume=4|issue=6|pages=900–902|doi=10.2307/2031826|issn=0002-9939}}</ref>.
In the theory od complex polynomials, '''Cohn's theorem'''<ref name=":0">{{Cite journal|last=Cohn|first=A|date=1922|title=Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise|url=https://link.springer.com/article/10.1007%2FBF01216772|journal=Math. Z.|volume=14|pages=110–148|via=}}</ref> states that a n-degree self-inversive polynomial <math>p_n(z)</math> has as many roots in the open unit disk <math>D =\{z \in \mathbb{C}: |z|<1\}</math> as the reciprocal polynomial of its derivative. For the proof, see the papers<ref name=":0" /><ref>{{Cite journal|last=Bonsall|first=F. F.|last2=Marden|first2=Morris|date=1952|title=Zeros of self-inversive polynomials|url=http://www.ams.org/home/page/|journal=Proceedings of the American Mathematical Society|language=en-US|volume=3|issue=3|pages=471–475|doi=10.2307/2031905|issn=0002-9939}}</ref><ref>{{Cite journal|last=Ancochea|first=Germán|date=1953|title=Zeros of self-inversive polynomials|url=http://www.ams.org/home/page/|journal=Proceedings of the American Mathematical Society|language=en-US|volume=4|issue=6|pages=900–902|doi=10.2307/2031826|issn=0002-9939}}</ref>. Cohn's theorem is useful to study the distribution of the roots of self-inversive and self-reciprcal polynomials in the complex plane - see, for example, the papers<ref>{{Cite journal|last=Schinzel|first=A.|date=2005-03-01|title=Self-Inversive Polynomials with All Zeros on the Unit Circle|url=https://link.springer.com/article/10.1007/s11139-005-0821-9|journal=The Ramanujan Journal|language=en|volume=9|issue=1-2|pages=19–23|doi=10.1007/s11139-005-0821-9|issn=1382-4090}}</ref><ref>{{Cite journal|last=Vieira|first=R. S.|date=2017|title=On the number of roots of self-inversive polynomials on the complex unit circle|url=https://link.springer.com/article/10.1007/s11139-016-9804-2|journal=The Ramanujan Journal|language=en|volume=42|issue=2|pages=363–369|doi=10.1007/s11139-016-9804-2|issn=1382-4090|via=}}</ref>.

Cohn's theorem is useful to study the distribution of the roots of self-inversive and self-reciprcal polynomials in the complex plane -- see, for instance, the paper<ref>{{Cite journal|last=Vieira|first=R. S.|date=2017|title=On the number of roots of self-inversive polynomials on the complex unit circle|url=https://link.springer.com/article/10.1007/s11139-016-9804-2|journal=The Ramanujan Journal|language=en|volume=42|issue=2|pages=363–369|doi=10.1007/s11139-016-9804-2|issn=1382-4090|via=}}</ref>.


A n-degree polynomial,
A n-degree polynomial,

Revision as of 21:03, 13 March 2018

In the theory od complex polynomials, Cohn's theorem[1] states that a n-degree self-inversive polynomial has as many roots in the open unit disk as the reciprocal polynomial of its derivative. For the proof, see the papers[1][2][3]. Cohn's theorem is useful to study the distribution of the roots of self-inversive and self-reciprcal polynomials in the complex plane - see, for example, the papers[4][5].

A n-degree polynomial,

is called self-inversive if

where,

is the reciprocal polynomial associated with and the bar means complex conjugation. Self-inversive polynomials have many interesting properties[6]. For instance, its roots are all symmetric with respect to the unit circle and a polynomial whose roots are all on the unit circle is necessarely self-inversive. The coefficients of a self-inversive polynomial satisfy the relations

In the case where a self-inversive polynomial becomes a complex-reciprocal polynomial (also known as self-conjugate polynomial) and if its coefficients are real then it becomes a real self-reciprical polynomial.

The formal derivative of is a n-1 degree polynomial given by

Therefore, Cohn's theorem states that both as the polynomial

has the same number of roots in

  1. ^ a b Cohn, A (1922). "Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise". Math. Z. 14: 110–148.
  2. ^ Bonsall, F. F.; Marden, Morris (1952). "Zeros of self-inversive polynomials". Proceedings of the American Mathematical Society. 3 (3): 471–475. doi:10.2307/2031905. ISSN 0002-9939.
  3. ^ Ancochea, Germán (1953). "Zeros of self-inversive polynomials". Proceedings of the American Mathematical Society. 4 (6): 900–902. doi:10.2307/2031826. ISSN 0002-9939.
  4. ^ Schinzel, A. (2005-03-01). "Self-Inversive Polynomials with All Zeros on the Unit Circle". The Ramanujan Journal. 9 (1–2): 19–23. doi:10.1007/s11139-005-0821-9. ISSN 1382-4090.
  5. ^ Vieira, R. S. (2017). "On the number of roots of self-inversive polynomials on the complex unit circle". The Ramanujan Journal. 42 (2): 363–369. doi:10.1007/s11139-016-9804-2. ISSN 1382-4090.
  6. ^ Marden, Morris (1970). Geometry of polynomials (revised edition). Mathematical Surveys and Monographs (Book 3) United States of America: American Mathematical Society. ISBN 978-0821815038.{{cite book}}: CS1 maint: location (link)