Jump to content

Pdr1p: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
tag for improvement, add cat
Added subsections and more sentences to the article
Line 1: Line 1:
{{context|date=May 2018}}
{{context|date=May 2018}}
'''Pdr1p''' is a [[transcription factor]] present in [[Saccharomyces cerevisiae]] and is a key regulator of general drug response so that yeasts can tolerate toxic chemicals.<ref name=":0">{{Cite journal|last=Fardeau|first=Vivienne|last2=Lelandais|first2=Gaëlle|last3=Oldfield|first3=Andrew|last4=Salin|first4=Hélène|last5=Lemoine|first5=Sophie|last6=Garcia|first6=Mathilde|last7=Tanty|first7=Véronique|last8=Crom|first8=Stéphane Le|last9=Jacq|first9=Claude|date=2007-02-16|title=The Central Role of PDR1 in the Foundation of Yeast Drug Resistance|url=http://www.jbc.org/content/282/7/5063|journal=Journal of Biological Chemistry|language=en|volume=282|issue=7|pages=5063–5074|doi=10.1074/jbc.M610197200|issn=0021-9258|pmid=17158869}}</ref><ref>{{Cite web|url=http://uswest.ensembl.org/Saccharomyces_cerevisiae/Gene/Summary?g=YGL013C;r=VII:469092-472298;t=YGL013C|title=Gene: PDR1 (YGL013C) - Summary - Saccharomyces cerevisiae - Ensembl genome browser 92|website=uswest.ensembl.org|language=en-gb|access-date=2018-05-03}}</ref><ref>{{Cite journal|last=Balzi|first=E.|last2=Chen|first2=W.|last3=Ulaszewski|first3=S.|last4=Capieaux|first4=E.|last5=Goffeau|first5=A.|date=1987-12-15|title=The multidrug resistance gene PDR1 from Saccharomyces cerevisiae|url=https://www.ncbi.nlm.nih.gov/pubmed/3316228|journal=The Journal of Biological Chemistry|volume=262|issue=35|pages=16871–16879|issn=0021-9258|pmid=3316228}}</ref>


It binds to [[DNA]] at sequences that contain certain motifs called pleiotropic drug response element or PDRE for short.<ref name=":0" />


[[Category:Molecular biology]]
== Reference ==


<references />


Pdr1p is a [[Transcription factor]] from [[Saccharomyces cerevisiae]] and is a key regulator of general drug response genes so that the yeast can survive under toxic chemicals.<ref name=":0">{{Cite journal|last=Fardeau|first=Vivienne|last2=Lelandais|first2=Gaëlle|last3=Oldfield|first3=Andrew|last4=Salin|first4=Hélène|last5=Lemoine|first5=Sophie|last6=Garcia|first6=Mathilde|last7=Tanty|first7=Véronique|last8=Crom|first8=Stéphane Le|last9=Jacq|first9=Claude|date=2007-02-16|title=The Central Role of PDR1 in the Foundation of Yeast Drug Resistance|url=http://www.jbc.org/content/282/7/5063|journal=Journal of Biological Chemistry|language=en|volume=282|issue=7|pages=5063–5074|doi=10.1074/jbc.M610197200|issn=0021-9258|pmid=17158869}}</ref> <ref name=":2">{{Cite web|url=http://uswest.ensembl.org/Saccharomyces_cerevisiae/Gene/Summary?g=YGL013C;r=VII:469092-472298;t=YGL013C|title=Gene: PDR1 (YGL013C) - Summary - Saccharomyces cerevisiae - Ensembl genome browser 92|website=uswest.ensembl.org|language=en-gb|access-date=2018-05-03}}</ref><ref>{{Cite journal|last=Balzi|first=E.|last2=Chen|first2=W.|last3=Ulaszewski|first3=S.|last4=Capieaux|first4=E.|last5=Goffeau|first5=A.|date=1987-12-15|title=The multidrug resistance gene PDR1 from Saccharomyces cerevisiae|url=https://www.ncbi.nlm.nih.gov/pubmed/3316228|journal=The Journal of Biological Chemistry|volume=262|issue=35|pages=16871–16879|issn=0021-9258|pmid=3316228}}</ref> It binds to DNA at sequences that contain certain motifs called pleiotropic drug response element or PDRE for short.<ref name=":0" /> Pdr1p is encoded by a gene in yeast called ''PDR1'' on chromosome VII.<ref name=":2" /><ref>{{Cite web|url=http://uswest.ensembl.org/Saccharomyces_cerevisiae/Gene/Summary?db=core;g=YGL013C;r=VII:469092-472298;t=YGL013C|title=Gene: PDR1 (YGL013C) - Summary - Saccharomyces cerevisiae - Ensembl genome browser 92|website=uswest.ensembl.org|language=en-gb|access-date=2018-05-10}}</ref> It is a [[zinc finger]] protein that regulates the expressions of [[ATP-binding cassette transporter]] to export toxic substances out of the cell.<ref name=":2" /><ref>{{Cite journal|last=Coorey|first=Namal V. C.|last2=Matthews|first2=James H.|last3=Bellows|first3=David S.|last4=Atkinson|first4=Paul H.|date=2015|title=Pleiotropic drug-resistance attenuated genomic library improves elucidation of drug mechanisms|url=http://xlink.rsc.org/?DOI=C5MB00406C|journal=Molecular BioSystems|language=en|volume=11|issue=11|pages=3129–3136|doi=10.1039/c5mb00406c|issn=1742-206X}}</ref><ref name=":3">{{Cite journal|last=Mamnun|first=Yasmine M.|last2=Pandjaitan|first2=Rudy|last3=Mahé|first3=Yannick|last4=Delahodde|first4=Agnés|last5=Kuchler|first5=Karl|date=2002-12|title=The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo|url=https://www.ncbi.nlm.nih.gov/pubmed/12453227|journal=Molecular Microbiology|volume=46|issue=5|pages=1429–1440|issn=0950-382X|pmid=12453227}}</ref>
[[Category:Molecular biology]]

__TOC__

== Transcriptional Role ==

* Pdr1p is a part of bigger PDR network and has about 50 genes that it can target<ref name=":0" />
* Pdr1p is known to bind to PDRE of 5'-TCCGYGGR-3', which is located around promoter sequences of its target genes.<ref name=":4">{{Cite journal|last=Salin|first=Hélène|last2=Fardeau|first2=Vivienne|last3=Piccini|first3=Eugenia|last4=Lelandais|first4=Gaelle|last5=Tanty|first5=Véronique|last6=Lemoine|first6=Sophie|last7=Jacq|first7=Claude|last8=Devaux|first8=Frédéric|date=2008-07-15|title=Structure and properties of transcriptional networks driving selenite stress response in yeasts|url=https://www.ncbi.nlm.nih.gov/pubmed/18627600|journal=BMC genomics|volume=9|pages=333|doi=10.1186/1471-2164-9-333|issn=1471-2164|pmc=PMC2515152|pmid=18627600}}</ref><ref name=":5">{{Cite journal|last=Katzmann|first=D. J.|last2=Burnett|first2=P. E.|last3=Golin|first3=J.|last4=Mahé|first4=Y.|last5=Moye-Rowley|first5=W. S.|date=1994-7|title=Transcriptional control of the yeast PDR5 gene by the PDR3 gene product|url=https://www.ncbi.nlm.nih.gov/pubmed/8007969|journal=Molecular and Cellular Biology|volume=14|issue=7|pages=4653–4661|issn=0270-7306|pmc=PMC358838|pmid=8007969}}</ref>
* Pdr1p seems to be bound to PDRE sites on DNA at basal level and also after simulation with toxins, which shows that Pdr1p-DNA interaction isn't dependent on toxic stimulation.<ref name=":0" />
* For cells treated with [[Fluphenazine]], Pdr1p was the only transcription factor that is ncessary for PDR response genes induction. But at basal level, Pdr1p can be partially compensated by Pdr3p, a functional homolog of Pdr1p.<ref name=":0" />
* Loss of function studies of both ''PDR1'' and ''PDR3'', which codes for Pdr3p, revealed that Pdr1p mutant shows lower tolerance against [[Cycloheximide]] and [[Oligomycin]], showing again that Pdr1p confers stronger drug response phenotype than Pdr3p.<ref name=":5" /> However, Pdr3p is crucial for PDR responses since cells containing loss of function ''PDR1'' and ''PDR3'' weren't able to grow in the presence of those two toxins.<ref name=":5" /> For the cells to exhibit [[Cycloheximide]] resistance, Pdr3p regulates Pdr5p, which is a type of [[ATP-binding cassette transporter]].<ref name=":5" />

== Interaction with other transcription factors ==
Pdr1p can form a heterodimer and homdimer with Pdr3p. <ref name=":1">{{Cite journal|last=Akache|first=Bassel|last2=MacPherson|first2=Sarah|last3=Sylvain|first3=Marc-André|last4=Turcotte|first4=Bernard|date=2004-07-02|title=Complex Interplay Among Regulators of Drug Resistance Genes in Saccharomyces cerevisiae|url=http://www.jbc.org/content/279/27/27855|journal=Journal of Biological Chemistry|language=en|volume=279|issue=27|pages=27855–27860|doi=10.1074/jbc.M403487200|issn=0021-9258|pmid=15123673}}</ref><ref name=":3" /> Pdr1p and Pdr3p also interacts with other transcription factors and their associated networks such as Yap1p, which controls oxidative stress response, and Rpn4p, which regulates proteasome activities, depending on the kinds of toxins cells face<ref name=":4" />

== Importance ==
As mentioned above, in yeast Pdr1p is regulator of pleiotropic drug resistance responses. Drugs or toxic chemicals are useful in killing pathogenic bacteria or tumor cells, and studying how they mechanistically develop tolerance to a wide range of drugs can improve therapeutics.<ref name=":1" />

== Related Topics ==

* [[Multiple drug resistance]]

== Reference ==

#

Revision as of 08:49, 21 May 2018


Pdr1p is a Transcription factor from Saccharomyces cerevisiae and is a key regulator of general drug response genes so that the yeast can survive under toxic chemicals.[1] [2][3] It binds to DNA at sequences that contain certain motifs called pleiotropic drug response element or PDRE for short.[1] Pdr1p is encoded by a gene in yeast called PDR1 on chromosome VII.[2][4] It is a zinc finger protein that regulates the expressions of ATP-binding cassette transporter to export toxic substances out of the cell.[2][5][6]

Transcriptional Role

  • Pdr1p is a part of bigger PDR network and has about 50 genes that it can target[1]
  • Pdr1p is known to bind to PDRE of 5'-TCCGYGGR-3', which is located around promoter sequences of its target genes.[7][8]
  • Pdr1p seems to be bound to PDRE sites on DNA at basal level and also after simulation with toxins, which shows that Pdr1p-DNA interaction isn't dependent on toxic stimulation.[1]
  • For cells treated with Fluphenazine, Pdr1p was the only transcription factor that is ncessary for PDR response genes induction. But at basal level, Pdr1p can be partially compensated by Pdr3p, a functional homolog of Pdr1p.[1]
  • Loss of function studies of both PDR1 and PDR3, which codes for Pdr3p, revealed that Pdr1p mutant shows lower tolerance against Cycloheximide and Oligomycin, showing again that Pdr1p confers stronger drug response phenotype than Pdr3p.[8] However, Pdr3p is crucial for PDR responses since cells containing loss of function PDR1 and PDR3 weren't able to grow in the presence of those two toxins.[8] For the cells to exhibit Cycloheximide resistance, Pdr3p regulates Pdr5p, which is a type of ATP-binding cassette transporter.[8]

Interaction with other transcription factors

Pdr1p can form a heterodimer and homdimer with Pdr3p. [9][6] Pdr1p and Pdr3p also interacts with other transcription factors and their associated networks such as Yap1p, which controls oxidative stress response, and Rpn4p, which regulates proteasome activities, depending on the kinds of toxins cells face[7]

Importance

As mentioned above, in yeast Pdr1p is regulator of pleiotropic drug resistance responses. Drugs or toxic chemicals are useful in killing pathogenic bacteria or tumor cells, and studying how they mechanistically develop tolerance to a wide range of drugs can improve therapeutics.[9]

Related Topics

Reference

  1. ^ a b c d e Fardeau, Vivienne; Lelandais, Gaëlle; Oldfield, Andrew; Salin, Hélène; Lemoine, Sophie; Garcia, Mathilde; Tanty, Véronique; Crom, Stéphane Le; Jacq, Claude (2007-02-16). "The Central Role of PDR1 in the Foundation of Yeast Drug Resistance". Journal of Biological Chemistry. 282 (7): 5063–5074. doi:10.1074/jbc.M610197200. ISSN 0021-9258. PMID 17158869.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ a b c "Gene: PDR1 (YGL013C) - Summary - Saccharomyces cerevisiae - Ensembl genome browser 92". uswest.ensembl.org. Retrieved 2018-05-03.
  3. ^ Balzi, E.; Chen, W.; Ulaszewski, S.; Capieaux, E.; Goffeau, A. (1987-12-15). "The multidrug resistance gene PDR1 from Saccharomyces cerevisiae". The Journal of Biological Chemistry. 262 (35): 16871–16879. ISSN 0021-9258. PMID 3316228.
  4. ^ "Gene: PDR1 (YGL013C) - Summary - Saccharomyces cerevisiae - Ensembl genome browser 92". uswest.ensembl.org. Retrieved 2018-05-10.
  5. ^ Coorey, Namal V. C.; Matthews, James H.; Bellows, David S.; Atkinson, Paul H. (2015). "Pleiotropic drug-resistance attenuated genomic library improves elucidation of drug mechanisms". Molecular BioSystems. 11 (11): 3129–3136. doi:10.1039/c5mb00406c. ISSN 1742-206X.
  6. ^ a b Mamnun, Yasmine M.; Pandjaitan, Rudy; Mahé, Yannick; Delahodde, Agnés; Kuchler, Karl (2002-12). "The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo". Molecular Microbiology. 46 (5): 1429–1440. ISSN 0950-382X. PMID 12453227. {{cite journal}}: Check date values in: |date= (help)
  7. ^ a b Salin, Hélène; Fardeau, Vivienne; Piccini, Eugenia; Lelandais, Gaelle; Tanty, Véronique; Lemoine, Sophie; Jacq, Claude; Devaux, Frédéric (2008-07-15). "Structure and properties of transcriptional networks driving selenite stress response in yeasts". BMC genomics. 9: 333. doi:10.1186/1471-2164-9-333. ISSN 1471-2164. PMC 2515152. PMID 18627600.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  8. ^ a b c d Katzmann, D. J.; Burnett, P. E.; Golin, J.; Mahé, Y.; Moye-Rowley, W. S. (1994-7). "Transcriptional control of the yeast PDR5 gene by the PDR3 gene product". Molecular and Cellular Biology. 14 (7): 4653–4661. ISSN 0270-7306. PMC 358838. PMID 8007969. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  9. ^ a b Akache, Bassel; MacPherson, Sarah; Sylvain, Marc-André; Turcotte, Bernard (2004-07-02). "Complex Interplay Among Regulators of Drug Resistance Genes in Saccharomyces cerevisiae". Journal of Biological Chemistry. 279 (27): 27855–27860. doi:10.1074/jbc.M403487200. ISSN 0021-9258. PMID 15123673.{{cite journal}}: CS1 maint: unflagged free DOI (link)