Jump to content

2,1,3-Benzothiadiazole: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Reactions: Aromaticity extent shown by NMR
→‎Reactions: Added reference for OLED use
Line 40: Line 40:
2,1,3-Benzothiadiazole undergoes the standard chemistry of [[Aromaticity|aromatic]] compounds, for example readily forming nitro<ref name=Pesin1 /> and chloro derivatives.<ref>{{cite journal |doi=10.1007/BF00944264 |title=Researches on 2,1,3-thia-and selenadiazole |year=1969 |last1=Pesin |first1=V. G. |last2=d'Yachenko |first2=E. K. |journal=Chemistry of Heterocyclic Compounds |volume=3 |pages=68–70 |s2cid=100997583 }}</ref> The extent of the aromaticity of this heterocycle was examined by a study of its proton [[nuclear magnetic resonance|NMR]] spectrum and comparison with [[napthalene]], which allowed the conclusion that it and related oxygen and [[selenium]] heterocycles did behave as 10-electron systems in which the 2-heteroatom contributed its lone pair to the [[Chemical_shift#Factors_causing_chemical_shifts|ring current]], in accordance with [[Hückel's rule]].<ref>{{cite journal |doi=10.1007/BF00755265 |url=https://link.springer.com/content/pdf/10.1007/BF00755265.pdf |format=pdf |title=Studies in the field of aromatic heterocycles |year=1970 |last1=Fedin |first1=E. I. |last2=Todres |first2=Z. V. |journal=Chemistry of Heterocyclic Compounds |volume=4 |issue=3 |pages=308–313 |s2cid=91864834 }}</ref>
2,1,3-Benzothiadiazole undergoes the standard chemistry of [[Aromaticity|aromatic]] compounds, for example readily forming nitro<ref name=Pesin1 /> and chloro derivatives.<ref>{{cite journal |doi=10.1007/BF00944264 |title=Researches on 2,1,3-thia-and selenadiazole |year=1969 |last1=Pesin |first1=V. G. |last2=d'Yachenko |first2=E. K. |journal=Chemistry of Heterocyclic Compounds |volume=3 |pages=68–70 |s2cid=100997583 }}</ref> The extent of the aromaticity of this heterocycle was examined by a study of its proton [[nuclear magnetic resonance|NMR]] spectrum and comparison with [[napthalene]], which allowed the conclusion that it and related oxygen and [[selenium]] heterocycles did behave as 10-electron systems in which the 2-heteroatom contributed its lone pair to the [[Chemical_shift#Factors_causing_chemical_shifts|ring current]], in accordance with [[Hückel's rule]].<ref>{{cite journal |doi=10.1007/BF00755265 |url=https://link.springer.com/content/pdf/10.1007/BF00755265.pdf |format=pdf |title=Studies in the field of aromatic heterocycles |year=1970 |last1=Fedin |first1=E. I. |last2=Todres |first2=Z. V. |journal=Chemistry of Heterocyclic Compounds |volume=4 |issue=3 |pages=308–313 |s2cid=91864834 }}</ref>


Compounds containing this [[Heterocyclic compound|heterocycle]] have been of interest as [[Dye|dyestuffs]] and in [[luminescence]] studies.<ref>{{Cite journal |last=Neto |first=Brenno A. D. |last2=Lapis |first2=Alexandre A. M. |last3=da Silva Júnior |first3=Eufrânio N. |last4=Dupont |first4=Jairton |date=January 2013 |title=2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules |journal=[[European Journal of Organic Chemistry]] |volume=2013|issue=2|pages=228–255 |doi=10.1002/ejoc.201201161}}</ref><ref>{{Cite journal |last=Frizon |first=Tiago Elias Allievi |last2=Valdivia Martínez |first2=Julio César |last3=Westrup |first3=José Luiz |last4=Duarte |first4=Rodrigo da Costa |last5=Zapp |first5=Eduardo |last6=Domiciano |first6=Kelvin Guessi |last7=Rodembusch |first7=Fabiano Severo |last8=Dal-Bó |first8=Alexandre Gonçalves |date=December 2016 |title=2,1,3-Benzothiadiazole-based fluorophores. Synthesis, electrochemical, thermal and photophysical characterization |journal=Dyes and Pigments|volume=135|pages=26–35 |doi=10.1016/j.dyepig.2016.07.011}}</ref><ref>{{Cite journal |last=Sukhikh |first=Taisiya |last2=Ogienko |first2=D. |last3=Bashirov |first3=D. |last4=Konchenkoa |first4=S. |date=May 21, 2019 |title=Luminescent complexes of 2,1,3-benzothiadiazole derivatives |journal=Russian Chemical Bulletin |volume= 68|pages=651–661 |doi=10.1007/s11172-019-2472-9}}</ref>
Compounds containing this [[Heterocyclic compound|heterocycle]] have been of interest as [[Dye|dyestuffs]], white [[OLED|light-emitting polymers]]<ref>{{cite book |doi=10.1007/978-3-642-14935-1_2 |chapter=White-Emitting Polymers and Devices |title=WOLEDs and Organic Photovoltaics |series=Green Energy and Technology |year=2010 |last1=Wu |first1=Hongbin |last2=Ying |first2=Lei |last3=Yang |first3=Wei |last4=Cao |first4=Yong |pages=37–78 |isbn=978-3-642-14934-4 }}</ref> and in [[luminescence]] studies.<ref>{{Cite journal |last=Neto |first=Brenno A. D. |last2=Lapis |first2=Alexandre A. M. |last3=da Silva Júnior |first3=Eufrânio N. |last4=Dupont |first4=Jairton |date=January 2013 |title=2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules |journal=[[European Journal of Organic Chemistry]] |volume=2013|issue=2|pages=228–255 |doi=10.1002/ejoc.201201161}}</ref><ref>{{Cite journal |last=Frizon |first=Tiago Elias Allievi |last2=Valdivia Martínez |first2=Julio César |last3=Westrup |first3=José Luiz |last4=Duarte |first4=Rodrigo da Costa |last5=Zapp |first5=Eduardo |last6=Domiciano |first6=Kelvin Guessi |last7=Rodembusch |first7=Fabiano Severo |last8=Dal-Bó |first8=Alexandre Gonçalves |date=December 2016 |title=2,1,3-Benzothiadiazole-based fluorophores. Synthesis, electrochemical, thermal and photophysical characterization |journal=Dyes and Pigments|volume=135|pages=26–35 |doi=10.1016/j.dyepig.2016.07.011}}</ref><ref>{{Cite journal |last=Sukhikh |first=Taisiya |last2=Ogienko |first2=D. |last3=Bashirov |first3=D. |last4=Konchenkoa |first4=S. |date=May 21, 2019 |title=Luminescent complexes of 2,1,3-benzothiadiazole derivatives |journal=Russian Chemical Bulletin |volume= 68|pages=651–661 |doi=10.1007/s11172-019-2472-9}}</ref>


== Hazards ==
== Hazards ==

Revision as of 13:04, 29 August 2020

2,1,3-Benzothiadiazole
Names
IUPAC name
2,1,3-benzothiadiazole
Systematic IUPAC name
2,1,3-benzothiadiazole
Other names
  • Piazthiole
  • benzisothiadiazole
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.005.442 Edit this at Wikidata
EC Number
  • 205-985-2
  • InChI=1S/C6H4N2S/c1-2-4-6-5(3-1)7-9-8-6/h1-4H
    Key: PDQRQJVPEFGVRK-UHFFFAOYSA-N
  • C1=CC2=NSN=C2C=C1
Properties
C6H4N2S
Molar mass 136.17 g·mol−1
Melting point 54.0 °C (129.2 °F; 327.1 K)
Boiling point 203.0 °C (397.4 °F; 476.1 K)
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
The 3D model of 2,1,3-Benzothiadiazole. Carbon in grey. Nitrogen in blue . Hydrogen in white and Sulfur in yellow.

2,1,3-Benzothiadiazole is a ring-fused bicyclic combination of benzene and thiadiazole.

Preparation

2,1,3-Benzothiadiazole has been known since the 19th century. It is readily prepared in at least 85% yield from o-phenylenediamine by reaction with thionyl chloride in pyridine.[1]

Reactions

2,1,3-Benzothiadiazole undergoes the standard chemistry of aromatic compounds, for example readily forming nitro[1] and chloro derivatives.[2] The extent of the aromaticity of this heterocycle was examined by a study of its proton NMR spectrum and comparison with napthalene, which allowed the conclusion that it and related oxygen and selenium heterocycles did behave as 10-electron systems in which the 2-heteroatom contributed its lone pair to the ring current, in accordance with Hückel's rule.[3]

Compounds containing this heterocycle have been of interest as dyestuffs, white light-emitting polymers[4] and in luminescence studies.[5][6][7]

Hazards

2,1,3-Benzothiadiazole is a skin and eye irritant.

References

  1. ^ a b Pesin, V. G.; Sergeev, V. A. (1969). "Research on 2,1,3-thia- and selenadiazole". Chemistry of Heterocyclic Compounds. 3 (5): 662–666. doi:10.1007/BF00468340. S2CID 98830770.
  2. ^ Pesin, V. G.; d'Yachenko, E. K. (1969). "Researches on 2,1,3-thia-and selenadiazole". Chemistry of Heterocyclic Compounds. 3: 68–70. doi:10.1007/BF00944264. S2CID 100997583.
  3. ^ Fedin, E. I.; Todres, Z. V. (1970). "Studies in the field of aromatic heterocycles" (pdf). Chemistry of Heterocyclic Compounds. 4 (3): 308–313. doi:10.1007/BF00755265. S2CID 91864834.
  4. ^ Wu, Hongbin; Ying, Lei; Yang, Wei; Cao, Yong (2010). "White-Emitting Polymers and Devices". WOLEDs and Organic Photovoltaics. Green Energy and Technology. pp. 37–78. doi:10.1007/978-3-642-14935-1_2. ISBN 978-3-642-14934-4.
  5. ^ Neto, Brenno A. D.; Lapis, Alexandre A. M.; da Silva Júnior, Eufrânio N.; Dupont, Jairton (January 2013). "2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules". European Journal of Organic Chemistry. 2013 (2): 228–255. doi:10.1002/ejoc.201201161.
  6. ^ Frizon, Tiago Elias Allievi; Valdivia Martínez, Julio César; Westrup, José Luiz; Duarte, Rodrigo da Costa; Zapp, Eduardo; Domiciano, Kelvin Guessi; Rodembusch, Fabiano Severo; Dal-Bó, Alexandre Gonçalves (December 2016). "2,1,3-Benzothiadiazole-based fluorophores. Synthesis, electrochemical, thermal and photophysical characterization". Dyes and Pigments. 135: 26–35. doi:10.1016/j.dyepig.2016.07.011.
  7. ^ Sukhikh, Taisiya; Ogienko, D.; Bashirov, D.; Konchenkoa, S. (May 21, 2019). "Luminescent complexes of 2,1,3-benzothiadiazole derivatives". Russian Chemical Bulletin. 68: 651–661. doi:10.1007/s11172-019-2472-9.