Breath-figure self-assembly: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: hdl, doi added to citation with #oabot.
Reference added
Line 1: Line 1:
[[File:Breath-figure schematic.png|thumb|upright=1.8|Schematic (bottom) and electron micrographs (top) of the growth of a honeycomb [[polystyrene]] film by breath-figure self-assembly.]]
[[File:Breath-figure schematic.png|thumb|upright=1.8|Schematic (bottom) and electron micrographs (top) of the growth of a honeycomb [[polystyrene]] film by breath-figure self-assembly.]]
[[File:Breath-figure membrane.jpg|thumb|upright=1.8|A water filter membrane prepared by breath-figure self-assembly, viewed at different synthesis steps and magnifications. The membrane material is a mixture of poly(phenylene oxide) and silica nanoparticles.]]
[[File:Breath-figure membrane.jpg|thumb|upright=1.8|A water filter membrane prepared by breath-figure self-assembly, viewed at different synthesis steps and magnifications. The membrane material is a mixture of poly(phenylene oxide) and silica nanoparticles.]]
'''Breath-figure self-assembly''' is the [[self-assembly]] process of formation of [[Honeycomb structure|honeycomb]] micro-scaled polymer patterns by the condensation of water droplets. "Breath-figure" refers to the fog that forms when water vapor contacts a cold surface.<ref name=rev1/><ref>{{Cite journal|last=Zhang|first=Aijuan|last2=Bai|first2=Hua|last3=Li|first3=Lei|date=2015|title=Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films|journal=Chemical Reviews|volume=115|issue=18|pages=9801–9868|doi=10.1021/acs.chemrev.5b00069|pmid=26284609}}</ref> In the modern era systematic study of the process of breath-figures water condensation was carried out by [[John Aitken (meteorologist)|Aitken]]<ref>{{Cite journal|last=Aitken|first=John|date=1893|title=Breath Figures|journal=Proceedings of the Royal Society of Edinburgh|volume=20|doi=10.1017/S0370164600048434|pages=94–97|url=http://www.mv.helsinki.fi/home/asmi/Aitken/22.%20BREATH%20FIGURES.pdf}}</ref><ref>{{Cite journal|last=Aitken|first=John|date=1911|title=Breath Figures|journal=Nature|volume=86|issue=2172|pages=516–517|doi=10.1038/086516a0|via=}}</ref> and [[John William Strutt, 3rd Baron Rayleigh|Rayleigh]],<ref>{{Cite journal|last=Rayleigh|first=Lord|date=1911|title=Breath Figures|journal=Nature|volume=86|issue=2169|pages=416–417|doi=10.1038/086416d0|doi-access=free}}</ref><ref>{{Cite journal|last=Rayleigh|first=Lord|date=1912|title=Breath Figures.|journal=Nature|volume=90|issue=2251|pages=436–438|doi=10.1038/090436c0|doi-access=free}}</ref> among others. Half a century later the interest to the breath-figure formation was revived in a view of study of atmospheric processes, and in particular the extended study of a dew formation which turned out to be a complicated physical process. The experimental and theoretical study of dew formation has been carried out by Beysens.<ref>{{Cite journal|last=Beysens|first=D.|last2=Steyer|first2=A.|last3=Guenoun|first3=P.|last4=Fritter|first4=D.|last5=Knobler|first5=C. M.|date=1991|title=How does dew form?|journal=Phase Transitions|volume=31|issue=1–4|pages=219–246|doi=10.1080/01411599108206932}}</ref><ref>{{Cite journal|last=Beysens|first=D.|date=1995|title=The formation of dew|journal=Atmospheric Research|volume=39|issue=1–3|pages=215–237|doi=10.1016/0169-8095(95)00015-j}}</ref><ref>{{Cite journal|last=Beysens|first=Daniel|date=2006|title=Dew nucleation and growth|journal=Comptes Rendus Physique|volume=7|issue=9–10|pages=1082–1100|doi=10.1016/j.crhy.2006.10.020}}</ref> Thermodynamic and kinetic aspects of dew formation, which are crucial for understanding of formation of breath-figures inspired polymer patterns will be addressed further in detail.
'''Breath-figure self-assembly''' is the [[self-assembly]] process of formation of [[Honeycomb structure|honeycomb]] micro-scaled polymer patterns by the condensation of water droplets. "Breath-figure" refers to the fog that forms when water vapor contacts a cold surface.<ref>{{Cite book|last=Rodríguez-Hernández|first=Juan|url=http://link.springer.com/10.1007/978-3-030-51136-4|title=Breath Figures: Mechanisms of Multi-scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces|last2=Bormashenko|first2=Edward|date=2020|publisher=Springer International Publishing|isbn=978-3-030-51135-7|location=Cham|language=en|doi=10.1007/978-3-030-51136-4}}</ref><ref name=rev1/><ref>{{Cite journal|last=Zhang|first=Aijuan|last2=Bai|first2=Hua|last3=Li|first3=Lei|date=2015|title=Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films|journal=Chemical Reviews|volume=115|issue=18|pages=9801–9868|doi=10.1021/acs.chemrev.5b00069|pmid=26284609}}</ref> In the modern era systematic study of the process of breath-figures water condensation was carried out by [[John Aitken (meteorologist)|Aitken]]<ref>{{Cite journal|last=Aitken|first=John|date=1893|title=Breath Figures|journal=Proceedings of the Royal Society of Edinburgh|volume=20|doi=10.1017/S0370164600048434|pages=94–97|url=http://www.mv.helsinki.fi/home/asmi/Aitken/22.%20BREATH%20FIGURES.pdf}}</ref><ref>{{Cite journal|last=Aitken|first=John|date=1911|title=Breath Figures|journal=Nature|volume=86|issue=2172|pages=516–517|doi=10.1038/086516a0|via=}}</ref> and [[John William Strutt, 3rd Baron Rayleigh|Rayleigh]],<ref>{{Cite journal|last=Rayleigh|first=Lord|date=1911|title=Breath Figures|journal=Nature|volume=86|issue=2169|pages=416–417|doi=10.1038/086416d0|doi-access=free}}</ref><ref>{{Cite journal|last=Rayleigh|first=Lord|date=1912|title=Breath Figures.|journal=Nature|volume=90|issue=2251|pages=436–438|doi=10.1038/090436c0|doi-access=free}}</ref> among others. Half a century later the interest to the breath-figure formation was revived in a view of study of atmospheric processes, and in particular the extended study of a dew formation which turned out to be a complicated physical process. The experimental and theoretical study of dew formation has been carried out by Beysens.<ref>{{Cite journal|last=Beysens|first=D.|last2=Steyer|first2=A.|last3=Guenoun|first3=P.|last4=Fritter|first4=D.|last5=Knobler|first5=C. M.|date=1991|title=How does dew form?|journal=Phase Transitions|volume=31|issue=1–4|pages=219–246|doi=10.1080/01411599108206932}}</ref><ref>{{Cite journal|last=Beysens|first=D.|date=1995|title=The formation of dew|journal=Atmospheric Research|volume=39|issue=1–3|pages=215–237|doi=10.1016/0169-8095(95)00015-j}}</ref><ref>{{Cite journal|last=Beysens|first=Daniel|date=2006|title=Dew nucleation and growth|journal=Comptes Rendus Physique|volume=7|issue=9–10|pages=1082–1100|doi=10.1016/j.crhy.2006.10.020}}</ref> Thermodynamic and kinetic aspects of dew formation, which are crucial for understanding of formation of breath-figures inspired polymer patterns will be addressed further in detail.


Breakthrough in the application of the breath-figures patterns was achieved in 1994–1995 when Widawski, François and Pitois reported manufacturing of [[polymer]] films with a [[Self-organization|self‐organized]], micro-scaled, [[Honeycomb structure|honeycomb]] morphology using the breath-figures [[Condensation|condensation process]].<ref>{{Cite journal|last=Widawski|first=Gilles|last2=Rawiso|first2=Michel|last3=François|first3=Bernard|date=1994|title=Self-organized honeycomb morphology of star-polymer polystyrene films|journal=Nature|volume=369|issue=6479|pages=387–389|doi=10.1038/369387a0|via=}}</ref><ref>{{Cite journal|last=François|first=Bernard|last2=Pitois|first2=Olivier|last3=François|first3=Jeanne|date=1995|title=Polymer films with a self-organized honeycomb morphology|journal=Advanced Materials|volume=7|issue=12|pages=1041–1044|doi=10.1002/adma.19950071217}}</ref> The reported process was based on the rapidly evaporated polymer solutions exerted to humidity.<ref name=":0">{{Cite journal|last=Bunz|first=U. H. F.|date=2006|title=Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials|journal=Advanced Materials|volume=18|issue=8|pages=973–989|doi=10.1002/adma.200501131}}</ref><ref>{{Cite journal|last=Muñoz-Bonilla|first=Alexandra|last2=Fernández-García|first2=Marta|last3=Rodríguez-Hernández|first3=Juan|date=2014|title=Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach|journal=Progress in Polymer Science|volume=39|issue=3|pages=510–554|doi=10.1016/j.progpolymsci.2013.08.006|hdl=10261/98768|hdl-access=free}}</ref><ref name=":1">{{Cite journal|last=Bormashenko|first=Edward|date=2017|title=Breath-Figure Self-Assembly, a Versatile Method of Manufacturing Membranes and Porous Structures: Physical, Chemical and Technological Aspects|journal=Membranes|volume=7|issue=3|pages=45|doi=10.3390/membranes7030045|pmc=5618130|pmid=28813026}}</ref> The introduction into experimental techniques involved in manufacturing of micropatterned surfaces is supplied in reference 1; image representing typical breath-figures-inspired honeycomb pattern is shown in Figure 1.
Breakthrough in the application of the breath-figures patterns was achieved in 1994–1995 when Widawski, François and Pitois reported manufacturing of [[polymer]] films with a [[Self-organization|self‐organized]], micro-scaled, [[Honeycomb structure|honeycomb]] morphology using the breath-figures [[Condensation|condensation process]].<ref>{{Cite journal|last=Widawski|first=Gilles|last2=Rawiso|first2=Michel|last3=François|first3=Bernard|date=1994|title=Self-organized honeycomb morphology of star-polymer polystyrene films|journal=Nature|volume=369|issue=6479|pages=387–389|doi=10.1038/369387a0|via=}}</ref><ref>{{Cite journal|last=François|first=Bernard|last2=Pitois|first2=Olivier|last3=François|first3=Jeanne|date=1995|title=Polymer films with a self-organized honeycomb morphology|journal=Advanced Materials|volume=7|issue=12|pages=1041–1044|doi=10.1002/adma.19950071217}}</ref> The reported process was based on the rapidly evaporated polymer solutions exerted to humidity.<ref name=":0">{{Cite journal|last=Bunz|first=U. H. F.|date=2006|title=Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials|journal=Advanced Materials|volume=18|issue=8|pages=973–989|doi=10.1002/adma.200501131}}</ref><ref>{{Cite journal|last=Muñoz-Bonilla|first=Alexandra|last2=Fernández-García|first2=Marta|last3=Rodríguez-Hernández|first3=Juan|date=2014|title=Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach|journal=Progress in Polymer Science|volume=39|issue=3|pages=510–554|doi=10.1016/j.progpolymsci.2013.08.006|hdl=10261/98768|hdl-access=free}}</ref><ref name=":1">{{Cite journal|last=Bormashenko|first=Edward|date=2017|title=Breath-Figure Self-Assembly, a Versatile Method of Manufacturing Membranes and Porous Structures: Physical, Chemical and Technological Aspects|journal=Membranes|volume=7|issue=3|pages=45|doi=10.3390/membranes7030045|pmc=5618130|pmid=28813026}}</ref> The introduction into experimental techniques involved in manufacturing of micropatterned surfaces is supplied in reference 1; image representing typical breath-figures-inspired honeycomb pattern is shown in Figure 1.

Revision as of 12:21, 17 September 2020

Schematic (bottom) and electron micrographs (top) of the growth of a honeycomb polystyrene film by breath-figure self-assembly.
A water filter membrane prepared by breath-figure self-assembly, viewed at different synthesis steps and magnifications. The membrane material is a mixture of poly(phenylene oxide) and silica nanoparticles.

Breath-figure self-assembly is the self-assembly process of formation of honeycomb micro-scaled polymer patterns by the condensation of water droplets. "Breath-figure" refers to the fog that forms when water vapor contacts a cold surface.[1][2][3] In the modern era systematic study of the process of breath-figures water condensation was carried out by Aitken[4][5] and Rayleigh,[6][7] among others. Half a century later the interest to the breath-figure formation was revived in a view of study of atmospheric processes, and in particular the extended study of a dew formation which turned out to be a complicated physical process. The experimental and theoretical study of dew formation has been carried out by Beysens.[8][9][10] Thermodynamic and kinetic aspects of dew formation, which are crucial for understanding of formation of breath-figures inspired polymer patterns will be addressed further in detail.

Breakthrough in the application of the breath-figures patterns was achieved in 1994–1995 when Widawski, François and Pitois reported manufacturing of polymer films with a self‐organized, micro-scaled, honeycomb morphology using the breath-figures condensation process.[11][12] The reported process was based on the rapidly evaporated polymer solutions exerted to humidity.[13][14][15] The introduction into experimental techniques involved in manufacturing of micropatterned surfaces is supplied in reference 1; image representing typical breath-figures-inspired honeycomb pattern is shown in Figure 1.

The main physical processes involved in the process are: 1) evaporation of the polymer solution; 2) nucleation of water droplets; 3) condensation of water droplets; 4) growth of droplets; 5) evaporation of water; 6) solidification of polymer giving rise to the eventual micro-porous pattern.[16] This experimental technique allows obtaining well-ordered, hierarchical, honeycomb surface patterns.[13][16] A variety of experimental techniques were successfully exploited for the formation of breath-figures self-assembly induced patterns including drop-casting, dip-coating and spin-coating.[2][15] Hierarchical patterning occurring under breath-figures self-assembly was reported. The characteristic dimension of pores is usually close to 1 µm, whereas the characteristic lateral dimension of the large-scale patterns is ca. 10–50 µm.[2]

See also

References

  1. ^ Rodríguez-Hernández, Juan; Bormashenko, Edward (2020). Breath Figures: Mechanisms of Multi-scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces. Cham: Springer International Publishing. doi:10.1007/978-3-030-51136-4. ISBN 978-3-030-51135-7.
  2. ^ a b c Yabu, Hiroshi (2018). "Fabrication of honeycomb films by the breath figure technique and their applications". Science and Technology of Advanced Materials. 19: 802–822. doi:10.1080/14686996.2018.1528478. Open access icon
  3. ^ Zhang, Aijuan; Bai, Hua; Li, Lei (2015). "Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films". Chemical Reviews. 115 (18): 9801–9868. doi:10.1021/acs.chemrev.5b00069. PMID 26284609.
  4. ^ Aitken, John (1893). "Breath Figures" (PDF). Proceedings of the Royal Society of Edinburgh. 20: 94–97. doi:10.1017/S0370164600048434.
  5. ^ Aitken, John (1911). "Breath Figures". Nature. 86 (2172): 516–517. doi:10.1038/086516a0.
  6. ^ Rayleigh, Lord (1911). "Breath Figures". Nature. 86 (2169): 416–417. doi:10.1038/086416d0.
  7. ^ Rayleigh, Lord (1912). "Breath Figures". Nature. 90 (2251): 436–438. doi:10.1038/090436c0.
  8. ^ Beysens, D.; Steyer, A.; Guenoun, P.; Fritter, D.; Knobler, C. M. (1991). "How does dew form?". Phase Transitions. 31 (1–4): 219–246. doi:10.1080/01411599108206932.
  9. ^ Beysens, D. (1995). "The formation of dew". Atmospheric Research. 39 (1–3): 215–237. doi:10.1016/0169-8095(95)00015-j.
  10. ^ Beysens, Daniel (2006). "Dew nucleation and growth". Comptes Rendus Physique. 7 (9–10): 1082–1100. doi:10.1016/j.crhy.2006.10.020.
  11. ^ Widawski, Gilles; Rawiso, Michel; François, Bernard (1994). "Self-organized honeycomb morphology of star-polymer polystyrene films". Nature. 369 (6479): 387–389. doi:10.1038/369387a0.
  12. ^ François, Bernard; Pitois, Olivier; François, Jeanne (1995). "Polymer films with a self-organized honeycomb morphology". Advanced Materials. 7 (12): 1041–1044. doi:10.1002/adma.19950071217.
  13. ^ a b Bunz, U. H. F. (2006). "Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials". Advanced Materials. 18 (8): 973–989. doi:10.1002/adma.200501131.
  14. ^ Muñoz-Bonilla, Alexandra; Fernández-García, Marta; Rodríguez-Hernández, Juan (2014). "Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach". Progress in Polymer Science. 39 (3): 510–554. doi:10.1016/j.progpolymsci.2013.08.006. hdl:10261/98768.
  15. ^ a b Bormashenko, Edward (2017). "Breath-Figure Self-Assembly, a Versatile Method of Manufacturing Membranes and Porous Structures: Physical, Chemical and Technological Aspects". Membranes. 7 (3): 45. doi:10.3390/membranes7030045. PMC 5618130. PMID 28813026.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ a b Srinivasarao, Mohan; Collings, David; Philips, Alan; Patel, Sanjay (2001). "Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film". Science. 292 (5514): 79–83. doi:10.1126/science.1057887. PMID 11292866.