Jump to content

Multi-component gas analyzer system: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Fix PMC warnings
Brynnams (talk | contribs)
Added multiple sections and expanded the text
Line 1: Line 1:
[[File:A selection of instruments used for monitoring volcanoes.jpg|thumb|upright=1.65|A multi-component gas analyzer system is often one of many instruments used to monitor volcanic activity.]]
[[File:A selection of instruments used for monitoring volcanoes.jpg|thumb|upright=1.65|A multi-component gas analyzer system is often one of many instruments used to monitor volcanic activity.]]
A '''multi-component gas analyzer system (Multi-GAS)''' is an instrument package used to take real-time high-resolution measurements of [[volcanic gas]] [[Eruption column|plume]]s.<ref name=geosciworld>{{cite journal|url=http://geology.geoscienceworld.org/content/35/12/1115/|title=Forecasting Etna eruptions by real-time observation of volcanic gas composition|journal=Geology|volume=35|issue=12|pages=1115|doi=10.1130/G24149A.1|year=2007|last1=Aiuppa|first1=Alessandro|last2=Moretti|first2=Roberto|last3=Federico|first3=Cinzia|last4=Giudice|first4=Gaetano|last5=Gurrieri|first5=Sergio|last6=Liuzzo|first6=Marco|last7=Papale|first7=Paolo|last8=Shinohara|first8=Hiroshi|last9=Valenza|first9=Mariano|bibcode=2007Geo....35.1115A}}</ref> A Multi-GAS package includes an [[infrared spectrometer]] for [[carbon dioxide|CO<sub>2</sub>]], two electrochemical sensors for [[Sulfur dioxide|SO<sub>2</sub>]] and [[Hydrogen sulfide|H<sub>2</sub>S]], and pressure–temperature–humidity sensors, all in a weatherproof box weighing approximately 3&nbsp;kg,<ref>{{cite journal|title=Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy) | doi=10.1029/2005GL023207 | bibcode=2005GeoRL..3213309A|volume=32| issue=13 | pages=L13309 |journal=Geophysical Research Letters|last1 = Aiuppa|first1 = A.| last2=Federico | first2=C. | last3=Giudice | first3=G. | last4=Gurrieri | first4=S. | year=2005 }}</ref> as well as radio transmitters to transmit data to remote locations. Additional electrochemical sensors, like for [[Hydrogen chloride|HCl]]<ref>{{Cite journal|last=Roberts|first=T. J.|last2=Lurton|first2=T.|last3=Giudice|first3=G.|last4=Liuzzo|first4=M.|last5=Aiuppa|first5=A.|last6=Coltelli|first6=M.|last7=Vignelles|first7=D.|last8=Salerno|first8=G.|last9=Couté|first9=B.|last10=Chartier|first10=M.|last11=Baron|first11=R.|date=2017|title=Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna|url=https://doi.org/10.1007/s00445-017-1114-z|journal=Bulletin of Volcanology|language=en|volume=79|issue=5|pages=36|doi=10.1007/s00445-017-1114-z|issn=1432-0819|pmc=6979509|pmid=32025075|via=}}</ref>, have been successfully incorporated into instruments as well. The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.<ref>{{cite journal|url=|title=A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system | doi=10.1016/j.jvolgeores.2004.12.004 | volume=143|issue=4 |journal=Journal of Volcanology and Geothermal Research|pages=319–333|date=2005-05-30 |last1=Shinohara |first1=Hiroshi }}</ref>
A '''multi-component gas analyzer system (Multi-GAS)''' is an instrument package used to take real-time high-resolution measurements of [[Volcanic gas|volcanic gases]].<ref name="geosciworld2">{{cite journal|last1=Aiuppa|first1=Alessandro|last2=Moretti|first2=Roberto|last3=Federico|first3=Cinzia|last4=Giudice|first4=Gaetano|last5=Gurrieri|first5=Sergio|last6=Liuzzo|first6=Marco|last7=Papale|first7=Paolo|last8=Shinohara|first8=Hiroshi|last9=Valenza|first9=Mariano|year=2007|title=Forecasting Etna eruptions by real-time observation of volcanic gas composition|url=http://geology.geoscienceworld.org/content/35/12/1115/|journal=Geology|volume=35|issue=12|pages=1115|bibcode=2007Geo....35.1115A|doi=10.1130/G24149A.1}}</ref> A Multi-GAS package includes an [[infrared spectrometer]] for [[carbon dioxide|CO<sub>2</sub>]], two electrochemical sensors for [[Sulfur dioxide|SO<sub>2</sub>]] and [[Hydrogen sulfide|H<sub>2</sub>S]], and pressure–temperature–humidity sensors, all in a weatherproof box.<ref>{{cite journal|title=Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy) | doi=10.1029/2005GL023207 | bibcode=2005GeoRL..3213309A|volume=32| issue=13 | pages=L13309 |journal=Geophysical Research Letters|last1 = Aiuppa|first1 = A.| last2=Federico | first2=C. | last3=Giudice | first3=G. | last4=Gurrieri | first4=S. | year=2005 }}</ref><ref name=":02">{{Cite journal|last=Tamburello|first=Giancarlo|date=2015|title=Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers|url=https://www.sciencedirect.com/science/article/pii/S0098300415001089|journal=Computers & Geosciences|language=en|volume=82|pages=63–67|doi=10.1016/j.cageo.2015.05.004|issn=0098-3004|via=}}</ref> The system can be used for individual surveys or set up as permanent stations<ref name="geosciworld3">{{cite journal|last1=Aiuppa|first1=Alessandro|last2=Moretti|first2=Roberto|last3=Federico|first3=Cinzia|last4=Giudice|first4=Gaetano|last5=Gurrieri|first5=Sergio|last6=Liuzzo|first6=Marco|last7=Papale|first7=Paolo|last8=Shinohara|first8=Hiroshi|last9=Valenza|first9=Mariano|year=2007|title=Forecasting Etna eruptions by real-time observation of volcanic gas composition|url=http://geology.geoscienceworld.org/content/35/12/1115/|journal=Geology|volume=35|issue=12|pages=1115|bibcode=2007Geo....35.1115A|doi=10.1130/G24149A.1}}</ref> connected to radio transmitters for transmission of data from remote locations.<ref name=":2">{{Cite journal|last=Gudjónsdóttir|first=Sylvía Rakel|last2=Ilyinskaya|first2=Evgenia|last3=Hreinsdóttir|first3=Sigrún|last4=Bergsson|first4=Baldur|last5=Pfeffer|first5=Melissa Anne|last6=Michalczewska|first6=Karolina|last7=Aiuppa|first7=Alessandro|last8=Óladóttir|first8=Audur Agla|date=2020|title=Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland|url=http://www.sciencedirect.com/science/article/pii/S0377027317303359|journal=Journal of Volcanology and Geothermal Research|language=en|volume=391|pages=106350|doi=10.1016/j.jvolgeores.2018.04.007|issn=0377-0273|via=}}</ref>The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.<ref>{{cite journal|url=|title=A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system | doi=10.1016/j.jvolgeores.2004.12.004 | volume=143|issue=4 |journal=Journal of Volcanology and Geothermal Research|pages=319–333|date=2005-05-30 |last1=Shinohara |first1=Hiroshi }}</ref>


Multi-GAS instruments have been used to measure volcanic gas plumes at [[Mount Etna]], [[Stromboli]], [[Vulcano]] Italy, [[Villarrica (volcano)]] Chile, [[Masaya Volcano]] Nicaragua, [[Mount Yasur]] and [[Ambrym]] Vanuatu, [[Miyake-jima]] and [[Mount Asama]] Japan, [[Soufrière Hills]] Montserrat, with permanent installations at Etna and Stromboli.<ref>{{cite web|url=https://www.cambridge.org/core/books/volcanism-and-global-environmental-change/volcanic-gas-monitoring/178D65AE5878B26882C086C3C01710D7/core-reader|title=Volcanic gas monitoring, Ch 6 in Volcanism and Global Environmental Change|date=January 2015}}</ref>
Multi-GAS instruments have been used to measure volcanic gases at [[Mount Etna]], [[Stromboli]], [[Vulcano]] Italy, [[Villarrica (volcano)]] Chile, [[Masaya Volcano]] Nicaragua, [[Mount Yasur]] and [[Ambrym]] Vanuatu, [[Miyake-jima]] and [[Mount Asama]] Japan, [[Soufrière Hills]] Montserrat, with permanent installations at Etna and Stromboli.<ref>{{cite web|url=https://www.cambridge.org/core/books/volcanism-and-global-environmental-change/volcanic-gas-monitoring/178D65AE5878B26882C086C3C01710D7/core-reader|title=Volcanic gas monitoring, Ch 6 in Volcanism and Global Environmental Change|date=January 2015}}</ref>


== System Mechanics ==
Multi-GAS measurements of CO<sub>2</sub>/SO<sub>2</sub> ratios can allow detection of the pre-eruptive degassing of rising [[magma]]s, improving the [[prediction of volcanic activity]].<ref name="geosciworld" />
[[File:Multi-Component Gas Analyzer (Multi-GAS) permanent station.jpg|thumb|Multi-GAS permanent field station. Set-up consists of a Multi-GAS, satellite terminal, 12V batteries, and solar panel control located inside the wooden box. Satellite antenna, solar panels, and multi-GAS intake/outtake located outside of the box.]]
Multi-component gas analyzer systems are used for measuring the major components of volcanic gases. CO<sub>2</sub>, SO<sub>2</sub>,H<sub>2</sub>S, and pressure-temperature-humidity sensors are typically included in a package.<ref name=":22">{{Cite journal|last=Gudjónsdóttir|first=Sylvía Rakel|last2=Ilyinskaya|first2=Evgenia|last3=Hreinsdóttir|first3=Sigrún|last4=Bergsson|first4=Baldur|last5=Pfeffer|first5=Melissa Anne|last6=Michalczewska|first6=Karolina|last7=Aiuppa|first7=Alessandro|last8=Óladóttir|first8=Audur Agla|date=2020|title=Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland|url=http://www.sciencedirect.com/science/article/pii/S0377027317303359|journal=Journal of Volcanology and Geothermal Research|language=en|volume=391|pages=106350|doi=10.1016/j.jvolgeores.2018.04.007|issn=0377-0273|via=}}</ref> Other electrochemical sensors have been successfully incorporated as well, including for [[Hydrogen|H<sub>2</sub>]]<ref name=":3">{{Cite journal|last=Aiuppa|first=A.|last2=Shinohara|first2=H.|last3=Tamburello|first3=G.|last4=Giudice|first4=G.|last5=Liuzzo|first5=M.|last6=Moretti|first6=R.|date=2011|title=Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JB008461|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=116|issue=B10|doi=10.1029/2011JB008461|issn=2156-2202}}</ref> and [[HCl]]<ref name=":4">{{Cite journal|last=Roberts|first=T. J.|last2=Lurton|first2=T.|last3=Giudice|first3=G.|last4=Liuzzo|first4=M.|last5=Aiuppa|first5=A.|last6=Coltelli|first6=M.|last7=Vignelles|first7=D.|last8=Salerno|first8=G.|last9=Couté|first9=B.|last10=Chartier|first10=M.|last11=Baron|first11=R.|date=2017|title=Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna|url=https://doi.org/10.1007/s00445-017-1114-z|journal=Bulletin of Volcanology|language=en|volume=79|issue=5|pages=36|doi=10.1007/s00445-017-1114-z|issn=1432-0819|pmc=6979509|pmid=32025075|via=}}</ref>. The instruments are packaged in compact, portable, weather-resistant containers allowing for ''in situ'' measurements of various types of outgassing terrains.<ref name=":13">{{cite journal|last1=Aiuppa|first1=A.|last2=Federico|first2=C.|last3=Giudice|first3=G.|last4=Gurrieri|first4=S.|year=2005|title=Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy)|journal=Geophysical Research Letters|volume=32|issue=13|pages=L13309|bibcode=2005GeoRL..3213309A|doi=10.1029/2005GL023207}}</ref> Gas is pumped into the system at a constant flow rate through a silicone tube placed near the location of interest.<ref name=":13" /> A data-logger is used to automatically record and convert the voltage values from the sensors into gas composition values.<ref name=":13" /><ref name=":03">{{Cite journal|last=Tamburello|first=Giancarlo|date=2015|title=Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers|url=https://www.sciencedirect.com/science/article/pii/S0098300415001089|journal=Computers & Geosciences|language=en|volume=82|pages=63–67|doi=10.1016/j.cageo.2015.05.004|issn=0098-3004|via=}}</ref> While the field use of a multi-GAS is simple, postprocessing of the data can be complex.<ref name=":03" /> This is due to factors like instrument drift, and atmospheric or environmental conditions.<ref name=":03" /> The system can be used for short term or long term studies. Short term usage can include powering the multi-GAS by a lithium battery and moving it around to desired locations<ref>{{Cite journal|last=Woitischek|first=Julia|last2=Woods|first2=Andrew W.|last3=Edmonds|first3=Marie|last4=Oppenheimer|first4=Clive|last5=Aiuppa|first5=Alessandro|last6=Pering|first6=Tom D.|last7=Ilanko|first7=Tehnuka|last8=D'Aleo|first8=Roberto|last9=Garaebiti|first9=Esline|date=2020|title=Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)|url=http://www.sciencedirect.com/science/article/pii/S0377027319306225|journal=Journal of Volcanology and Geothermal Research|language=en|volume=398|pages=106869|doi=10.1016/j.jvolgeores.2020.106869|issn=0377-0273|via=}}</ref><ref>{{Cite journal|last=Lages|first=J.|last2=Chacón|first2=Z.|last3=Burbano|first3=V.|last4=Meza|first4=L.|last5=Arellano|first5=S.|last6=Liuzzo|first6=M.|last7=Giudice|first7=G.|last8=Aiuppa|first8=A.|last9=Bitetto|first9=M.|last10=López|first10=C.|date=2019|title=Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008573|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=20|issue=11|pages=5057–5081|doi=10.1029/2019GC008573|issn=1525-2027}}</ref> or setting up a multi-GAS in a fixed location for a short period of time.<ref>{{Cite journal|last=de Moor|first=J.M.|last2=Aiuppa|first2=A.|last3=Pacheco|first3=J.|last4=Avard|first4=G.|last5=Kern|first5=C.|last6=Liuzzo|first6=M.|last7=Martinez|first7=M.|last8=Giudice|first8=G.|last9=Fischer|first9=T.P.|date=2016|title=Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica|url=https://www.sciencedirect.com/science/article/pii/S0012821X16300851|journal=Earth and Planetary Science Letters|language=en|volume=442|pages=218–227|doi=10.1016/j.epsl.2016.02.056|issn=0012-821X|via=}}</ref> Long term studies involve setting up a permanent installment for an extended time.<ref name=":5">{{Cite journal|last=Lewicki|first=J. L.|last2=Kelly|first2=P. J.|last3=Bergfeld|first3=D.|last4=Vaughan|first4=R. G.|last5=Lowenstern|first5=J. B.|date=2017|title=Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach|url=http://www.sciencedirect.com/science/article/pii/S0377027317304407|journal=Journal of Volcanology and Geothermal Research|language=en|volume=347|pages=312–326|doi=10.1016/j.jvolgeores.2017.10.001|issn=0377-0273|via=}}</ref> These stations can be set-up with [[Transmitter|radio transmitters]]<ref name=":22" /> or [[Satellite|satellites]] to send data from distant locations.<ref name=":6">{{Cite journal|last=Moor|first=J. Maarten de|last2=Aiuppa|first2=A.|last3=Avard|first3=G.|last4=Wehrmann|first4=H.|last5=Dunbar|first5=N.|last6=Muller|first6=C.|last7=Tamburello|first7=G.|last8=Giudice|first8=G.|last9=Liuzzo|first9=M.|last10=Moretti|first10=R.|last11=Conde|first11=V.|date=2016|title=Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013150|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=121|issue=8|pages=5761–5775|doi=10.1002/2016JB013150|issn=2169-9356|pmc=PMC5054823|pmid=27774371}}</ref>
[[File:Example_of_CO2_H2S_multi-GAS_data.png|link=https://en.wikipedia.org/wiki/File:Example_of_CO2_H2S_multi-GAS_data.png|thumb|Raw multi-GAS data showing the correlation between CO<sub>2</sub> and H<sub>2</sub>S.]]

== Volcano Monitoring ==
Monitoring changes in gas composition allows for an understanding of changes occurring in the associated volcanic system. Multi-GAS measurements of real-time CO<sub>2</sub>/SO<sub>2</sub> ratios can allow detection of the pre-eruptive degassing of rising [[magma]]s, improving the [[prediction of volcanic activity]].<ref name="geosciworld">{{cite journal|last1=Aiuppa|first1=Alessandro|last2=Moretti|first2=Roberto|last3=Federico|first3=Cinzia|last4=Giudice|first4=Gaetano|last5=Gurrieri|first5=Sergio|last6=Liuzzo|first6=Marco|last7=Papale|first7=Paolo|last8=Shinohara|first8=Hiroshi|last9=Valenza|first9=Mariano|year=2007|title=Forecasting Etna eruptions by real-time observation of volcanic gas composition|url=http://geology.geoscienceworld.org/content/35/12/1115/|journal=Geology|volume=35|issue=12|pages=1115|bibcode=2007Geo....35.1115A|doi=10.1130/G24149A.1}}</ref> Magmatic or hydrothermal input can be monitored by the temporal variations in H<sub>2</sub>S/SO<sub>2</sub> ratios, advancing the understanding of future eruptive behavior.<ref name=":62">{{Cite journal|last=Moor|first=J. Maarten de|last2=Aiuppa|first2=A.|last3=Avard|first3=G.|last4=Wehrmann|first4=H.|last5=Dunbar|first5=N.|last6=Muller|first6=C.|last7=Tamburello|first7=G.|last8=Giudice|first8=G.|last9=Liuzzo|first9=M.|last10=Moretti|first10=R.|last11=Conde|first11=V.|date=2016|title=Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013150|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=121|issue=8|pages=5761–5775|doi=10.1002/2016JB013150|issn=2169-9356|pmc=PMC5054823|pmid=27774371}}</ref> Other molar ratios and gas species measured by a multi-GAS can provide information for further analysis of volcanic conditions.<ref name=":04">{{Cite journal|last=Tamburello|first=Giancarlo|date=2015|title=Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers|url=https://www.sciencedirect.com/science/article/pii/S0098300415001089|journal=Computers & Geosciences|language=en|volume=82|pages=63–67|doi=10.1016/j.cageo.2015.05.004|issn=0098-3004|via=}}</ref>

== Case Studies ==

=== Mount Etna, Italy ===
A permanent multi-GAS installment was placed by Mount Etna's summit crater to collect real-time measurements of H<sub>2</sub>O, CO<sub>2</sub>, and SO<sub>2</sub> over a 2 year period. Data was used to correlate increasing CO<sub>2</sub>/SO<sub>2</sub> ratios with rising magma beneath the edifice and associated volcanic eruptions.<ref name="geosciworld4">{{cite journal|last1=Aiuppa|first1=Alessandro|last2=Moretti|first2=Roberto|last3=Federico|first3=Cinzia|last4=Giudice|first4=Gaetano|last5=Gurrieri|first5=Sergio|last6=Liuzzo|first6=Marco|last7=Papale|first7=Paolo|last8=Shinohara|first8=Hiroshi|last9=Valenza|first9=Mariano|year=2007|title=Forecasting Etna eruptions by real-time observation of volcanic gas composition|url=http://geology.geoscienceworld.org/content/35/12/1115/|journal=Geology|volume=35|issue=12|pages=1115|bibcode=2007Geo....35.1115A|doi=10.1130/G24149A.1}}</ref>

=== [[Krýsuvík (volcanic system)|Krýsuvík]], Iceland ===
A multi-GAS was emplaced in the [[Krýsuvík (volcanic system)|Krýsuvík]] [[Geothermal energy|geothermal system]] to collect real-time time-series data of H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>, and H<sub>2</sub>S. Molar ratios were compared with local [[Seismology|seismic]] data, increased gas ratio values followed episodes of increased seismicity. Degassing activity increases after [[Subsidence|ground movement]] due to the opening of new paths (e.g. [[Fracture (geology)|fractures]]) in the crust for the gas to flow.<ref name=":23">{{Cite journal|last=Gudjónsdóttir|first=Sylvía Rakel|last2=Ilyinskaya|first2=Evgenia|last3=Hreinsdóttir|first3=Sigrún|last4=Bergsson|first4=Baldur|last5=Pfeffer|first5=Melissa Anne|last6=Michalczewska|first6=Karolina|last7=Aiuppa|first7=Alessandro|last8=Óladóttir|first8=Audur Agla|date=2020|title=Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland|url=http://www.sciencedirect.com/science/article/pii/S0377027317303359|journal=Journal of Volcanology and Geothermal Research|language=en|volume=391|pages=106350|doi=10.1016/j.jvolgeores.2018.04.007|issn=0377-0273|via=}}</ref>

=== [[Yellowstone Caldera|Yellowstone]], United States ===
To help understand [[caldera]] dynamics a multi-GAS was used to measure temporal variations in volcanic gases at Yellowstone. Temporal variations coincided with atmospheric and environmental fluctuations. Molar ratios fell within a binary mixing trend.<ref name=":52">{{Cite journal|last=Lewicki|first=J. L.|last2=Kelly|first2=P. J.|last3=Bergfeld|first3=D.|last4=Vaughan|first4=R. G.|last5=Lowenstern|first5=J. B.|date=2017|title=Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach|url=http://www.sciencedirect.com/science/article/pii/S0377027317304407|journal=Journal of Volcanology and Geothermal Research|language=en|volume=347|pages=312–326|doi=10.1016/j.jvolgeores.2017.10.001|issn=0377-0273|via=}}</ref>

=== [[Mount Nyiragongo|Nyiragongo]], Democratic Republic of the Congo ===
CO<sub>2</sub>/SO<sub>2</sub> molar ratios from multi-GAS measurements confirmed a previous observation that an increase in lava lake levels correlates with an increase in the CO<sub>2</sub>/SO<sub>2 ratio.</sub><ref>{{Cite journal|last=Bobrowski|first=N.|last2=Giuffrida|first2=G. B.|last3=Yalire|first3=M.|last4=Lübcke|first4=P.|last5=Arellano|first5=S.|last6=Balagizi|first6=C.|last7=Calabrese|first7=S.|last8=Galle|first8=B.|last9=Tedesco|first9=D.|date=2017|title=Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo|url=http://www.sciencedirect.com/science/article/pii/S1464343X16302394|journal=Journal of African Earth Sciences|language=en|volume=134|pages=856–865|doi=10.1016/j.jafrearsci.2016.07.010|issn=1464-343X|via=}}</ref>

=== [[Deep Earth Carbon Degassing Project]] (DECADE) ===
The DECADE project supported initiatives to set up and expand the use of permanent instrumentation for continuous CO<sub>2</sub>, and SO<sub>2</sub> measurements from [[Volcano|volcanoes]].<ref>{{cite web|title=Fischer, T. P. (2013), DEep CArbon DEgassing: The Deep Carbon Observatory DECADE Initiative, Mineralogical Magazine, 77(5), 1089|url=http://minmag.geoscienceworld.org/content/gsminmag/77/5/1058.full.pdf/}}</ref> Multi-GAS systems have been set up at volcanoes like Villarrica, Chile<ref>{{Cite journal|last=Aiuppa|first=Alessandro|last2=Bitetto|first2=Marcello|last3=Francofonte|first3=Vincenzo|last4=Velasquez|first4=Gabriela|last5=Parra|first5=Claudia Bucarey|last6=Giudice|first6=Gaetano|last7=Liuzzo|first7=Marco|last8=Moretti|first8=Roberto|last9=Moussallam|first9=Yves|last10=Peters|first10=Nial|last11=Tamburello|first11=Giancarlo|date=2017|title=A CO2-gas precursor to the March 2015 Villarrica volcano eruption|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GC006892|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=18|issue=6|pages=2120–2132|doi=10.1002/2017GC006892|issn=1525-2027}}</ref> and [[Turrialba Volcano|Turrialba]], Costa Rica.<ref name=":63">{{Cite journal|last=Moor|first=J. Maarten de|last2=Aiuppa|first2=A.|last3=Avard|first3=G.|last4=Wehrmann|first4=H.|last5=Dunbar|first5=N.|last6=Muller|first6=C.|last7=Tamburello|first7=G.|last8=Giudice|first8=G.|last9=Liuzzo|first9=M.|last10=Moretti|first10=R.|last11=Conde|first11=V.|date=2016|title=Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JB013150|journal=Journal of Geophysical Research: Solid Earth|language=en|volume=121|issue=8|pages=5761–5775|doi=10.1002/2016JB013150|issn=2169-9356|pmc=PMC5054823|pmid=27774371}}</ref>


== References ==
== References ==
{{Reflist}}
{{Reflist}}


<!--- Categories --->== External Links ==
<!--- Categories --->== See Also ==

* [[Prediction of volcanic activity]]

== External Links ==
[https://www.usgs.gov/natural-hazards/volcano-hazards/methods-measure-gas-and-water-vary-depending-upon-level-volcanic USGS Volcano Hazards Program: Monitoring Gas & Water Methods]
[https://www.usgs.gov/natural-hazards/volcano-hazards/methods-measure-gas-and-water-vary-depending-upon-level-volcanic USGS Volcano Hazards Program: Monitoring Gas & Water Methods]
[[Category:Scientific instruments]]
[[Category:Scientific instruments]]

Revision as of 16:14, 28 October 2020

A multi-component gas analyzer system is often one of many instruments used to monitor volcanic activity.

A multi-component gas analyzer system (Multi-GAS) is an instrument package used to take real-time high-resolution measurements of volcanic gases.[1] A Multi-GAS package includes an infrared spectrometer for CO2, two electrochemical sensors for SO2 and H2S, and pressure–temperature–humidity sensors, all in a weatherproof box.[2][3] The system can be used for individual surveys or set up as permanent stations[4] connected to radio transmitters for transmission of data from remote locations.[5]The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.[6]

Multi-GAS instruments have been used to measure volcanic gases at Mount Etna, Stromboli, Vulcano Italy, Villarrica (volcano) Chile, Masaya Volcano Nicaragua, Mount Yasur and Ambrym Vanuatu, Miyake-jima and Mount Asama Japan, Soufrière Hills Montserrat, with permanent installations at Etna and Stromboli.[7]

System Mechanics

Multi-GAS permanent field station. Set-up consists of a Multi-GAS, satellite terminal, 12V batteries, and solar panel control located inside the wooden box. Satellite antenna, solar panels, and multi-GAS intake/outtake located outside of the box.

Multi-component gas analyzer systems are used for measuring the major components of volcanic gases. CO2, SO2,H2S, and pressure-temperature-humidity sensors are typically included in a package.[8] Other electrochemical sensors have been successfully incorporated as well, including for H2[9] and HCl[10]. The instruments are packaged in compact, portable, weather-resistant containers allowing for in situ measurements of various types of outgassing terrains.[11] Gas is pumped into the system at a constant flow rate through a silicone tube placed near the location of interest.[11] A data-logger is used to automatically record and convert the voltage values from the sensors into gas composition values.[11][12] While the field use of a multi-GAS is simple, postprocessing of the data can be complex.[12] This is due to factors like instrument drift, and atmospheric or environmental conditions.[12] The system can be used for short term or long term studies. Short term usage can include powering the multi-GAS by a lithium battery and moving it around to desired locations[13][14] or setting up a multi-GAS in a fixed location for a short period of time.[15] Long term studies involve setting up a permanent installment for an extended time.[16] These stations can be set-up with radio transmitters[8] or satellites to send data from distant locations.[17]

Raw multi-GAS data showing the correlation between CO2 and H2S.

Volcano Monitoring

Monitoring changes in gas composition allows for an understanding of changes occurring in the associated volcanic system. Multi-GAS measurements of real-time CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas, improving the prediction of volcanic activity.[18] Magmatic or hydrothermal input can be monitored by the temporal variations in H2S/SO2 ratios, advancing the understanding of future eruptive behavior.[19] Other molar ratios and gas species measured by a multi-GAS can provide information for further analysis of volcanic conditions.[20]

Case Studies

Mount Etna, Italy

A permanent multi-GAS installment was placed by Mount Etna's summit crater to collect real-time measurements of H2O, CO2, and SO2 over a 2 year period. Data was used to correlate increasing CO2/SO2 ratios with rising magma beneath the edifice and associated volcanic eruptions.[21]

Krýsuvík, Iceland

A multi-GAS was emplaced in the Krýsuvík geothermal system to collect real-time time-series data of H2O, CO2, SO2, and H2S. Molar ratios were compared with local seismic data, increased gas ratio values followed episodes of increased seismicity. Degassing activity increases after ground movement due to the opening of new paths (e.g. fractures) in the crust for the gas to flow.[22]

Yellowstone, United States

To help understand caldera dynamics a multi-GAS was used to measure temporal variations in volcanic gases at Yellowstone. Temporal variations coincided with atmospheric and environmental fluctuations. Molar ratios fell within a binary mixing trend.[23]

Nyiragongo, Democratic Republic of the Congo

CO2/SO2 molar ratios from multi-GAS measurements confirmed a previous observation that an increase in lava lake levels correlates with an increase in the CO2/SO2 ratio.[24]

The DECADE project supported initiatives to set up and expand the use of permanent instrumentation for continuous CO2, and SO2 measurements from volcanoes.[25] Multi-GAS systems have been set up at volcanoes like Villarrica, Chile[26] and Turrialba, Costa Rica.[27]

References

  1. ^ Aiuppa, Alessandro; Moretti, Roberto; Federico, Cinzia; Giudice, Gaetano; Gurrieri, Sergio; Liuzzo, Marco; Papale, Paolo; Shinohara, Hiroshi; Valenza, Mariano (2007). "Forecasting Etna eruptions by real-time observation of volcanic gas composition". Geology. 35 (12): 1115. Bibcode:2007Geo....35.1115A. doi:10.1130/G24149A.1.
  2. ^ Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. (2005). "Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy)". Geophysical Research Letters. 32 (13): L13309. Bibcode:2005GeoRL..3213309A. doi:10.1029/2005GL023207.
  3. ^ Tamburello, Giancarlo (2015). "Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers". Computers & Geosciences. 82: 63–67. doi:10.1016/j.cageo.2015.05.004. ISSN 0098-3004.
  4. ^ Aiuppa, Alessandro; Moretti, Roberto; Federico, Cinzia; Giudice, Gaetano; Gurrieri, Sergio; Liuzzo, Marco; Papale, Paolo; Shinohara, Hiroshi; Valenza, Mariano (2007). "Forecasting Etna eruptions by real-time observation of volcanic gas composition". Geology. 35 (12): 1115. Bibcode:2007Geo....35.1115A. doi:10.1130/G24149A.1.
  5. ^ Gudjónsdóttir, Sylvía Rakel; Ilyinskaya, Evgenia; Hreinsdóttir, Sigrún; Bergsson, Baldur; Pfeffer, Melissa Anne; Michalczewska, Karolina; Aiuppa, Alessandro; Óladóttir, Audur Agla (2020). "Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland". Journal of Volcanology and Geothermal Research. 391: 106350. doi:10.1016/j.jvolgeores.2018.04.007. ISSN 0377-0273.
  6. ^ Shinohara, Hiroshi (2005-05-30). "A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system". Journal of Volcanology and Geothermal Research. 143 (4): 319–333. doi:10.1016/j.jvolgeores.2004.12.004.
  7. ^ "Volcanic gas monitoring, Ch 6 in Volcanism and Global Environmental Change". January 2015.
  8. ^ a b Gudjónsdóttir, Sylvía Rakel; Ilyinskaya, Evgenia; Hreinsdóttir, Sigrún; Bergsson, Baldur; Pfeffer, Melissa Anne; Michalczewska, Karolina; Aiuppa, Alessandro; Óladóttir, Audur Agla (2020). "Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland". Journal of Volcanology and Geothermal Research. 391: 106350. doi:10.1016/j.jvolgeores.2018.04.007. ISSN 0377-0273.
  9. ^ Aiuppa, A.; Shinohara, H.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R. (2011). "Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy". Journal of Geophysical Research: Solid Earth. 116 (B10). doi:10.1029/2011JB008461. ISSN 2156-2202.
  10. ^ Roberts, T. J.; Lurton, T.; Giudice, G.; Liuzzo, M.; Aiuppa, A.; Coltelli, M.; Vignelles, D.; Salerno, G.; Couté, B.; Chartier, M.; Baron, R. (2017). "Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna". Bulletin of Volcanology. 79 (5): 36. doi:10.1007/s00445-017-1114-z. ISSN 1432-0819. PMC 6979509. PMID 32025075.
  11. ^ a b c Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. (2005). "Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy)". Geophysical Research Letters. 32 (13): L13309. Bibcode:2005GeoRL..3213309A. doi:10.1029/2005GL023207.
  12. ^ a b c Tamburello, Giancarlo (2015). "Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers". Computers & Geosciences. 82: 63–67. doi:10.1016/j.cageo.2015.05.004. ISSN 0098-3004.
  13. ^ Woitischek, Julia; Woods, Andrew W.; Edmonds, Marie; Oppenheimer, Clive; Aiuppa, Alessandro; Pering, Tom D.; Ilanko, Tehnuka; D'Aleo, Roberto; Garaebiti, Esline (2020). "Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)". Journal of Volcanology and Geothermal Research. 398: 106869. doi:10.1016/j.jvolgeores.2020.106869. ISSN 0377-0273.
  14. ^ Lages, J.; Chacón, Z.; Burbano, V.; Meza, L.; Arellano, S.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Bitetto, M.; López, C. (2019). "Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt". Geochemistry, Geophysics, Geosystems. 20 (11): 5057–5081. doi:10.1029/2019GC008573. ISSN 1525-2027.
  15. ^ de Moor, J.M.; Aiuppa, A.; Pacheco, J.; Avard, G.; Kern, C.; Liuzzo, M.; Martinez, M.; Giudice, G.; Fischer, T.P. (2016). "Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica". Earth and Planetary Science Letters. 442: 218–227. doi:10.1016/j.epsl.2016.02.056. ISSN 0012-821X.
  16. ^ Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B. (2017). "Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach". Journal of Volcanology and Geothermal Research. 347: 312–326. doi:10.1016/j.jvolgeores.2017.10.001. ISSN 0377-0273.
  17. ^ Moor, J. Maarten de; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V. (2016). "Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring". Journal of Geophysical Research: Solid Earth. 121 (8): 5761–5775. doi:10.1002/2016JB013150. ISSN 2169-9356. PMC 5054823. PMID 27774371.{{cite journal}}: CS1 maint: PMC format (link)
  18. ^ Aiuppa, Alessandro; Moretti, Roberto; Federico, Cinzia; Giudice, Gaetano; Gurrieri, Sergio; Liuzzo, Marco; Papale, Paolo; Shinohara, Hiroshi; Valenza, Mariano (2007). "Forecasting Etna eruptions by real-time observation of volcanic gas composition". Geology. 35 (12): 1115. Bibcode:2007Geo....35.1115A. doi:10.1130/G24149A.1.
  19. ^ Moor, J. Maarten de; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V. (2016). "Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring". Journal of Geophysical Research: Solid Earth. 121 (8): 5761–5775. doi:10.1002/2016JB013150. ISSN 2169-9356. PMC 5054823. PMID 27774371.{{cite journal}}: CS1 maint: PMC format (link)
  20. ^ Tamburello, Giancarlo (2015). "Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers". Computers & Geosciences. 82: 63–67. doi:10.1016/j.cageo.2015.05.004. ISSN 0098-3004.
  21. ^ Aiuppa, Alessandro; Moretti, Roberto; Federico, Cinzia; Giudice, Gaetano; Gurrieri, Sergio; Liuzzo, Marco; Papale, Paolo; Shinohara, Hiroshi; Valenza, Mariano (2007). "Forecasting Etna eruptions by real-time observation of volcanic gas composition". Geology. 35 (12): 1115. Bibcode:2007Geo....35.1115A. doi:10.1130/G24149A.1.
  22. ^ Gudjónsdóttir, Sylvía Rakel; Ilyinskaya, Evgenia; Hreinsdóttir, Sigrún; Bergsson, Baldur; Pfeffer, Melissa Anne; Michalczewska, Karolina; Aiuppa, Alessandro; Óladóttir, Audur Agla (2020). "Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland". Journal of Volcanology and Geothermal Research. 391: 106350. doi:10.1016/j.jvolgeores.2018.04.007. ISSN 0377-0273.
  23. ^ Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B. (2017). "Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach". Journal of Volcanology and Geothermal Research. 347: 312–326. doi:10.1016/j.jvolgeores.2017.10.001. ISSN 0377-0273.
  24. ^ Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Lübcke, P.; Arellano, S.; Balagizi, C.; Calabrese, S.; Galle, B.; Tedesco, D. (2017). "Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo". Journal of African Earth Sciences. 134: 856–865. doi:10.1016/j.jafrearsci.2016.07.010. ISSN 1464-343X.
  25. ^ "Fischer, T. P. (2013), DEep CArbon DEgassing: The Deep Carbon Observatory DECADE Initiative, Mineralogical Magazine, 77(5), 1089".
  26. ^ Aiuppa, Alessandro; Bitetto, Marcello; Francofonte, Vincenzo; Velasquez, Gabriela; Parra, Claudia Bucarey; Giudice, Gaetano; Liuzzo, Marco; Moretti, Roberto; Moussallam, Yves; Peters, Nial; Tamburello, Giancarlo (2017). "A CO2-gas precursor to the March 2015 Villarrica volcano eruption". Geochemistry, Geophysics, Geosystems. 18 (6): 2120–2132. doi:10.1002/2017GC006892. ISSN 1525-2027.
  27. ^ Moor, J. Maarten de; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V. (2016). "Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring". Journal of Geophysical Research: Solid Earth. 121 (8): 5761–5775. doi:10.1002/2016JB013150. ISSN 2169-9356. PMC 5054823. PMID 27774371.{{cite journal}}: CS1 maint: PMC format (link)

See Also

USGS Volcano Hazards Program: Monitoring Gas & Water Methods