List of solar storms: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Direct measurements and/or visual observations: fix typo for Dst value, add lay link
Line 19: Line 19:
* 660 BCE<ref>{{cite journal | last = O'Hare | first = Paschal |display-authors=etal | title = Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC) | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 116| issue =13
* 660 BCE<ref>{{cite journal | last = O'Hare | first = Paschal |display-authors=etal | title = Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC) | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 116| issue =13
| pages = 5961–5966 | date = 2019 | doi = 10.1073/pnas.1815725116|doi-access=free | bibcode = 2019PNAS..116.5961O | pmid = 30858311 | pmc = 6442557 }}</ref><ref>{{Cite journal |arxiv=1909.05498 |title=The Earliest Candidates of Auroral Observations in Assyrian Astrological Reports: Insights on Solar Activity around 660 BCE |journal=The Astrophysical Journal |volume=884 |issue=1 |pages=L18 |date=2019 |doi=10.3847/2041-8213/ab42e4 |last1=Hayakawa |first1=Hisashi |last2=Mitsuma |first2=Yasuyuki |last3=Ebihara |first3=Yusuke |last4=Miyake |first4=Fusa |bibcode=2019ApJ...884L..18H }}</ref>
| pages = 5961–5966 | date = 2019 | doi = 10.1073/pnas.1815725116|doi-access=free | bibcode = 2019PNAS..116.5961O | pmid = 30858311 | pmc = 6442557 }}</ref><ref>{{Cite journal |arxiv=1909.05498 |title=The Earliest Candidates of Auroral Observations in Assyrian Astrological Reports: Insights on Solar Activity around 660 BCE |journal=The Astrophysical Journal |volume=884 |issue=1 |pages=L18 |date=2019 |doi=10.3847/2041-8213/ab42e4 |last1=Hayakawa |first1=Hisashi |last2=Mitsuma |first2=Yasuyuki |last3=Ebihara |first3=Yusuke |last4=Miyake |first4=Fusa |bibcode=2019ApJ...884L..18H }}</ref>
* [[774–775 carbon-14 spike| 774-775]]<ref>{{cite journal |last1= Miyake |display-authors= etal |title= A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan |journal= Nature| date= 2012 |volume= 486 |issue= 7402 |pages= 240–2 |doi= 10.1038/nature11123 |pmid= 22699615 |bibcode = 2012Natur.486..240M }}</ref><ref>{{cite journal |last = Melott |first = Adrian L. |author2=B. C. Thomas |title = Causes of an AD 774–775 14C increase |journal = Nature |volume = 491 |issue = 7426 |pages = E1–E2 |date = 2012 |doi = 10.1038/nature11695 |arxiv = 1212.0490 |bibcode = 2012Natur.491E...1M |pmid=23192153}}</ref><ref>{{cite journal |last1= Usoskin |display-authors= etal |title= The AD775 cosmic event revisited: the Sun is to blame |journal= Astron. Astrophys. |date= 2013 |volume= 552 |page= L3 |doi=10.1051/0004-6361/201321080 |arxiv = 1302.6897 |bibcode = 2013A&A...552L...3U }}</ref><ref name="multiradionuclide 774-75">{{cite journal |last = Mekhaldi |first = Florian |display-authors=etal |title = Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4 |journal = Nature Communications |volume = 6 |issue = |pages = 8611 |date = 2015 |doi = 10.1038/ncomms9611 |pmid = 26497389 |pmc = 4639793 |bibcode = 2015NatCo...6.8611M }}</ref> This extreme [[solar proton event]] is known as the Miyake event. It caused the largest and most rapid rise in carbon 14 levels ever recorded.<ref>{{cite journal|url=https://www.cambridge.org/core/journals/radiocarbon/article/intcal20-northern-hemisphere-radiocarbon-age-calibration-curve-055-cal-kbp/83257B63DC3AF9CFA6243F59D7503EFF/core-reader#top|journal=Radiocarbon|date=August 2020|first=Paula|last=Reimer|display-authors=etal|title=THE INTCAL20 NORTHERN HEMISPHERE RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)}}</ref>
* [[774–775 carbon-14 spike| 774-775]]<!--<Ref>{{multiref|A|D|E|F|G}}</Ref>--><ref>{{cite journal |last1= Miyake |display-authors= etal |title= A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan |journal= Nature| date= 2012 |volume= 486 |issue= 7402 |pages= 240–2 |doi= 10.1038/nature11123 |pmid= 22699615 |bibcode = 2012Natur.486..240M }}</ref><ref>{{cite journal |last = Melott |first = Adrian L. |author2=B. C. Thomas |title = Causes of an AD 774–775 14C increase |journal = Nature |volume = 491 |issue = 7426 |pages = E1–E2 |date = 2012 |doi = 10.1038/nature11695 |arxiv = 1212.0490 |bibcode = 2012Natur.491E...1M |pmid=23192153}}</ref><ref>{{cite journal |last1= Usoskin |display-authors= etal |title= The AD775 cosmic event revisited: the Sun is to blame |journal= Astron. Astrophys. |date= 2013 |volume= 552 |page= L3 |doi=10.1051/0004-6361/201321080 |arxiv = 1302.6897 |bibcode = 2013A&A...552L...3U }}</ref><ref name="multiradionuclide 774-75">{{cite journal |last = Mekhaldi |first = Florian |display-authors=etal |title = Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4 |journal = Nature Communications |volume = 6 |issue = |pages = 8611 |date = 2015 |doi = 10.1038/ncomms9611 |pmid = 26497389 |pmc = 4639793 |bibcode = 2015NatCo...6.8611M }}</ref><ref name="DOI_10.3847/1538-4357/abad93">{{cite journal | DOI = 10.3847/1538-4357/abad93 | journal = The Astrophysical Journal | volume = 903 | number = 1 | date = 29 October 2020 | title = On the Size of the Flare Associated with the Solar Proton Event in 774 AD | author1 = Edward Cliver | author2 = Hisashi Hayakawa | author3 = Jeffrey J. Love | author4 = D. F. Neidig}}</ref> This extreme [[solar proton event]] is known as the Miyake event. It caused the largest and most rapid rise in carbon 14 levels ever recorded.<ref>{{cite journal|url=https://www.cambridge.org/core/journals/radiocarbon/article/intcal20-northern-hemisphere-radiocarbon-age-calibration-curve-055-cal-kbp/83257B63DC3AF9CFA6243F59D7503EFF/core-reader#top|journal=Radiocarbon|date=August 2020|first=Paula|last=Reimer|display-authors=etal|title=THE INTCAL20 NORTHERN HEMISPHERE RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)}}</ref>
* [[993-994 carbon-14 spike| 993-994]]<ref>{{cite journal |last = Fusa |first = Miyake |author2= Kimiaki Masuda |author3 = Toshio Nakamura |title = Another rapid event in the carbon-14 content of tree rings |journal = Nature Communications |volume = 4 |issue = 1748 |pages = 1748 |date = 2013 |doi = 10.1038/ncomms2783 |bibcode = 2013NatCo...4.1748M |pmid=23612289 |doi-access = free }}</ref><ref name="multiradionuclide 774-75"/><ref>{{cite journal |title = Historical Auroras in the 990s: Evidence of Great Magnetic Storms |journal = Solar Physics |volume = 292 |issue = 1 |pages = 12 |date=2017 |author= Hayakawa, H. |display-authors=etal |doi=10.1007/s11207-016-1039-2 |arxiv = 1612.01106 |bibcode = 2017SoPh..292...12H }}</ref>
* [[993-994 carbon-14 spike| 993-994]]<ref>{{cite journal |last = Fusa |first = Miyake |author2= Kimiaki Masuda |author3 = Toshio Nakamura |title = Another rapid event in the carbon-14 content of tree rings |journal = Nature Communications |volume = 4 |issue = 1748 |pages = 1748 |date = 2013 |doi = 10.1038/ncomms2783 |bibcode = 2013NatCo...4.1748M |pmid=23612289 |doi-access = free }}</ref><ref name="multiradionuclide 774-75"/><ref>{{cite journal |title = Historical Auroras in the 990s: Evidence of Great Magnetic Storms |journal = Solar Physics |volume = 292 |issue = 1 |pages = 12 |date=2017 |author= Hayakawa, H. |display-authors=etal |doi=10.1007/s11207-016-1039-2 |arxiv = 1612.01106 |bibcode = 2017SoPh..292...12H }}</ref>


Line 83: Line 83:
|-
|-
| 23 February 1956
| 23 February 1956
| <ref>{{cite journal |last = Meyer |first = P. |author2 = Parker, E. N. |author3 = Simpson, J. A |title = Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space |journal = Phys. Rev. |volume = 104 |issue = 3 |pages = 768–83 |date = 1956 |doi = 10.1103/PhysRev.104.768 |bibcode = 1956PhRv..104..768M }}</ref><ref>{{cite journal |last = Belov |first = A. |author2 = E. Eroshenko |author3 = H. Mavromichalaki |author4 = C. Plainaki |author5 = V. Yanke |title=Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956 |journal = Annales Geophysicae |volume = 23 |issue = 6 |pages = 2281–2291 |date=15 September 2005 |url = https://www.ann-geophys.net/23/2281/2005/angeo-23-2281-2005.pdf |bibcode = 2005AnGeo..23.2281B |doi = 10.5194/angeo-23-2281-2005 }}</ref><ref>{{cite journal|doi=10.1029/2020JA027921|journal=Journal of Geophysical Research: Space Physics|date=2020|title=Revisited reference solar proton event of 23‐Feb‐1956: Assessment of the cosmogenic‐isotope method sensitivity to extreme solar events | last1 = Usoskin | first1 = Ilya G. | last2 = Koldobskiy | first2 = Sergey A. | last3 = Kovaltsov | first3 = Gennady A. | last4 = Rozanov | first4 = Eugene V. | last5 = Sukhodolov | first5 = Timophei V. | last6 = Mishev | first6 = Alexander L. | last7 = Mironova | first7 = Irina A.| doi-access = free }}</ref>
| <ref>{{cite journal |last = Meyer |first = P. |author2 = Parker, E. N. |author3 = Simpson, J. A |title = Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space |journal = Phys. Rev. |volume = 104 |issue = 3 |pages = 768–83 |date = 1956 |doi = 10.1103/PhysRev.104.768 |bibcode = 1956PhRv..104..768M }}</ref><ref>{{cite journal |last = Belov |first = A. |author2 = E. Eroshenko |author3 = H. Mavromichalaki |author4 = C. Plainaki |author5 = V. Yanke |title=Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956 |journal = Annales Geophysicae |volume = 23 |issue = 6 |pages = 2281–2291 |date=15 September 2005 |url = https://www.ann-geophys.net/23/2281/2005/angeo-23-2281-2005.pdf |bibcode = 2005AnGeo..23.2281B |doi = 10.5194/angeo-23-2281-2005 }}</ref><ref>{{cite journal|doi=10.1029/2020JA027921|journal=Journal of Geophysical Research: Space Physics|date=2020|title=Revisited reference solar proton event of 23‐Feb‐1956: Assessment of the cosmogenic‐isotope method sensitivity to extreme solar events | last1 = Usoskin | first1 = Ilya G. | last2 = Koldobskiy | first2 = Sergey A. | last3 = Kovaltsov | first3 = Gennady A. | last4 = Rozanov | first4 = Eugene V. | last5 = Sukhodolov | first5 = Timophei V. | last6 = Mishev | first6 = Alexander L. | last7 = Mironova | first7 = Irina A.| doi-access = free }}</ref><!--<ref name="DOI_10.3847/1538-4357/abad93"/>-->
|
|
|-
|-

Revision as of 16:46, 8 November 2020

Solar storms of different types are caused by disturbances on the Sun, most often coronal clouds associated with coronal mass ejections (CMEs) produced by solar flares emanating from active sunspot regions, or, less often, from coronal holes. Solar filaments (solar prominences) may also trigger CMEs, trigger flares, or occur in conjunction with flares, and the associated CMEs can be intensified.

Background

Active stars produce disturbances in space weather with the field of heliophysics, the science that studies such phenomena; itself primarily an interdisciplinary combination of solar physics and planetary science (long-term space weather patterns comprise space climate).

In the Solar System, the Sun can produce intense geomagnetic and energetic particle storms capable of causing severe damage to technology including but not limited to large scale power outages, disruption or blackouts of radio communications (including GPS), and temporary to permanent disabling of satellites and other spaceborne technology. Intense solar storms may also be hazardous to high-latitude, high-altitude aviation[1] and to human spaceflight.[2] Geomagnetic storms are the cause of auroras.[3] The most significant known solar storm, across the most parameters, occurred in September 1859 and is known as the "Carrington event".[4] The damage from the most potent solar storms is capable of existentially threatening the stability of modern human civilization,[5][2] although proper preparedness and mitigation can substantially reduce the hazards.[6][7]

Proxy data from Earth, as well as analysis of stars similar to the Sun suggest that it may be capable of producing so called superflares, those which are much larger than any flares in the historical record (as much as 1000x stronger every 5000 years),[8][9][10] but it contradicts the models of solar flares[11] and to the statistic of extreme solar events reconstructed using cosmogenic isotope data in terrestrial archives.[12] The discrepancy is not yet resolved and may be related to a biased statistic of the stellar population of solar analogs [13]

Notable events

Electromagnetic, geomagnetic, and/or particle storms

Proxy evidence

NB: This section contains a list of possible events that are indicated by indirect, or proxy data. The scientific value of such data remains unresolved.[14] For example, a paper[15] by Usoskin in 2012 lists many years in which there is evidence for solar storms, including: 2225 and 1485 BCE, as well as 95, 265, 1460, 1505, 1707, 1709, 1710, and 1810 CE. However, none of these are corroborated by subsequent studies.
Events indicated by multiple proxy-data studies

Direct measurements and/or visual observations

Date(s) Event Significance
6-8 March 1582 Great Magnetic Storms Prolonged severe-extreme geomagnetic storm produced aurora to 28.8° magnetic latitude (MLAT) and ≈33.0° invariant latitude (ILAT).[26]
17 September 1770 [27][28]
Early September 1859 Solar storm of 1859 ("Carrington event") Overall most extreme storm ever documented; telegraph machines reportedly shocked operators and caused small fires; aurora visible in tropical areas; first solidly established connection of flares to geomagnetic disturbances. Extreme storming directly preceded this event in late August.
4-6 February 1872 [29]
17-20 November 1882 17-20 November 1882[30]
31 October-1 November 1903 Solar storm of Oct-Nov 1903[31][32] An extreme storm, estimated at Dst -531 nT arose from a fast CME (mean ≈1500 km/s), occurred during the ascending phase of the minimum of the relatively weak solar cycle 14, which is the most significant storm on record in a solar minimum period. Aurora was conservatively observed to ≈44.1° ILAT, and widespread disruptions and overcharging of telegraph systems occurred.
25-26 September 1909 Geomagnetic storm of September 1909[33] Dst calculated to have reached -595 nT, comparable to the March 1989 event
13–15 May 1921 May 1921 geomagnetic storm[34] Among most extreme known geomagnetic storms; farthest equatorward (lowest latitude) aurora ever documented; burned out fuses, electrical apparatus, and telephone station; caused fires at signal tower and telegraph station; total communications blackouts lasting several hours. A paper[35] in 2019 estimates intensity of −907±132 nT.
25-26 January 1938 25-26 January 1938 geomagnetic storm ("Fátima storm")
17–19 September 1941 [36]
23 February 1956 [37][38][39]
September 1957 Geomagnetic storm of September 1957[40]
February 1958 Geomagnetic storm of February 1958[40]
July 1959 Geomagnetic storm of July 1959[40]
Late May 1967 [41] Blackout of polar surveillance radars during Cold War led U.S. military to scramble for nuclear war until solar origin confirmed
Early August 1972 Solar storm of August 1972[42] Fastest CME transit time recorded; most extreme solar particle event (SPE) by some measures and the most hazardous to human spaceflight during the Space Age; severe technological disruptions, caused accidental detonation of numerous magnetic-influence sea mines
13-14 March 1989 March 1989 geomagnetic storm Most extreme storm of the Space Age by several measures; outed power grid of province of Quebec
August 1989 [43]
6 April 2000 [44]
14 July 2000 Bastille Day event
11 April 2001 [44]
October 2003 Halloween solar storms, 2003[45][46] Among top few most intense storms of the Space Age
20 November 2003 Solar storms of November 2003[40]
20 January 2005 [47][48]

Events not affecting Earth

The above events affected Earth (and its vicinity, known as the magnetosphere), whereas the following events were directed elsewhere in the Solar System and were detected by monitoring spacecraft or other means.

Date(s) Event Significance
4 November 2003 Extreme solar flare[49][50][51] Strongest solar flare ever recorded at an estimated X28-X45+
23 July 2012 Solar storm of 2012[52][53][54][55][56] Ultrafast CME directed away from Earth with characteristics that may have made it a Carrington-class storm

See also

References

  1. ^ RadsOnAPlane.com
  2. ^ a b Phillips, Tony (21 Jan 2009). "Severe Space Weather--Social and Economic Impacts". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  3. ^ "NOAA Space Weather Scales" (PDF). NOAA Space Weather Prediction Center. 1 Mar 2005. Retrieved 2017-09-13.
  4. ^ Bell, Trudy E.; T. Phillips (6 May 2008). "A Super Solar Flare". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  5. ^ Kappenman, John (2010). Geomagnetic Storms and Their Impacts on the U.S. Power Grid (PDF). META-R. Vol. 319. Goleta, CA: Metatech Corporation for Oak Ridge National Laboratory. OCLC 811858155. Archived from the original (PDF) on 2012-08-19.
  6. ^ National Space Weather Action Plan (PDF). Washington, DC: National Science and Technology Council. 28 Oct 2015.
  7. ^ Lingam, Manasvi; Abraham Loeb (2017). "Impact and mitigation strategy for future solar flares". arXiv:1709.05348 [astro-ph.EP].
  8. ^ Shibata, Kazunari (15 Apr 2015). "Superflares on Solar Type Stars and Their Implications on the Possibility of Superflares on the Sun" (PDF). 2015 Space Weather Workshop. Boulder, CO: Space Weather Prediction Center. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  9. ^ Karoff, Christoffer; et al. (2016). "Observational evidence for enhanced magnetic activity of superflare stars". Nat. Commun. 7 (11058): 11058. Bibcode:2016NatCo...711058K. doi:10.1038/ncomms11058. PMC 4820840. PMID 27009381.
  10. ^ Lingam, Manasvi; A. Loeb (2017). "Risks for Life on Habitable Planets from Superflares of Their Host Stars". Astrophysical Journal. 848 (1): 41. arXiv:1708.04241. Bibcode:2017ApJ...848...41L. doi:10.3847/1538-4357/aa8e96.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Aulanier, G.; et al. (2013). "The standard flare model in three dimensions. II. Upper limit on solar flare energy". Astron. Astrophys. 549: A66. arXiv:1212.2086. Bibcode:2013A&A...549A..66A. doi:10.1051/0004-6361/201220406.
  12. ^ Usoskin, Ilya (2017). "A history of solar activity over millennia". Living Rev. Sol. Phys. 14: 3. arXiv:0810.3972. Bibcode:2017LRSP...14....3U. doi:10.1007/s41116-017-0006-9.
  13. ^ Kitchatinov, Leonid; S. Olemskoy (2016). "Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?". Mon. Not. R. Astron. Soc. 459 (4): 4353. arXiv:1602.08840. Bibcode:2016MNRAS.459.4353K. doi:10.1093/mnras/stw875.
  14. ^ Mekhaldi, F.; et al. (2017). "No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms". Journal of Geophysical Research: Atmospheres. 122 (21): 11, 900–11, 913. Bibcode:2017JGRD..12211900M. doi:10.1002/2017JD027325.
  15. ^ Usoskin, Ilya G.; Gennady A. Kovaltsov (2012). "Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data". The Astrophysical Journal. 757 (92): 92. arXiv:1207.5932. Bibcode:2012ApJ...757...92U. doi:10.1088/0004-637X/757/1/92.
  16. ^ O'Hare, Paschal; et al. (2019). "Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC)". Proc. Natl. Acad. Sci. U.S.A. 116 (13): 5961–5966. Bibcode:2019PNAS..116.5961O. doi:10.1073/pnas.1815725116. PMC 6442557. PMID 30858311.
  17. ^ Hayakawa, Hisashi; Mitsuma, Yasuyuki; Ebihara, Yusuke; Miyake, Fusa (2019). "The Earliest Candidates of Auroral Observations in Assyrian Astrological Reports: Insights on Solar Activity around 660 BCE". The Astrophysical Journal. 884 (1): L18. arXiv:1909.05498. Bibcode:2019ApJ...884L..18H. doi:10.3847/2041-8213/ab42e4.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  18. ^ Miyake; et al. (2012). "A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan". Nature. 486 (7402): 240–2. Bibcode:2012Natur.486..240M. doi:10.1038/nature11123. PMID 22699615.
  19. ^ Melott, Adrian L.; B. C. Thomas (2012). "Causes of an AD 774–775 14C increase". Nature. 491 (7426): E1–E2. arXiv:1212.0490. Bibcode:2012Natur.491E...1M. doi:10.1038/nature11695. PMID 23192153.
  20. ^ Usoskin; et al. (2013). "The AD775 cosmic event revisited: the Sun is to blame". Astron. Astrophys. 552: L3. arXiv:1302.6897. Bibcode:2013A&A...552L...3U. doi:10.1051/0004-6361/201321080.
  21. ^ a b Mekhaldi, Florian; et al. (2015). "Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4". Nature Communications. 6: 8611. Bibcode:2015NatCo...6.8611M. doi:10.1038/ncomms9611. PMC 4639793. PMID 26497389.
  22. ^ Edward Cliver; Hisashi Hayakawa; Jeffrey J. Love; D. F. Neidig (29 October 2020). "On the Size of the Flare Associated with the Solar Proton Event in 774 AD". The Astrophysical Journal. 903 (1). doi:10.3847/1538-4357/abad93.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Reimer, Paula; et al. (August 2020). "THE INTCAL20 NORTHERN HEMISPHERE RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)". Radiocarbon.
  24. ^ Fusa, Miyake; Kimiaki Masuda; Toshio Nakamura (2013). "Another rapid event in the carbon-14 content of tree rings". Nature Communications. 4 (1748): 1748. Bibcode:2013NatCo...4.1748M. doi:10.1038/ncomms2783. PMID 23612289.
  25. ^ Hayakawa, H.; et al. (2017). "Historical Auroras in the 990s: Evidence of Great Magnetic Storms". Solar Physics. 292 (1): 12. arXiv:1612.01106. Bibcode:2017SoPh..292...12H. doi:10.1007/s11207-016-1039-2.
  26. ^ Lingam, Manasvi; Loeb, Abraham; Ebihara, Yusuke (2019). "Occurrence of Great Magnetic Storms on 6-8 March 1582". Monthly Notices of the Royal Astronomical Society. 487 (3): 3550. arXiv:1905.08017. Bibcode:2019MNRAS.487.3550H. doi:10.1093/mnras/stz1401.
  27. ^ Kataoka, Ryuho; K. Iwahashi (2017). "Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm". Space Weather. 15 (10): 1314–1320. Bibcode:2017SpWea..15.1314K. doi:10.1002/2017SW001690.
  28. ^ Hayakawa, Hisashi; et al. (2017). "Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents". Astrophysical Journal Letters. 850 (2): L31. arXiv:1711.00690. Bibcode:2017ApJ...850L..31H. doi:10.3847/2041-8213/aa9661.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Hayakawa, Hisashi; et al. (2018). "The Great Space Weather Event during 1872 February Recorded in East Asia". The Astrophysical Journal. 862 (1). doi:10.3847/1538-4357/aaca40.
  30. ^ Love, Jeffrey J. (2018). "The Electric Storm of November 1882". Space Weather. 16 (1): 37–46. Bibcode:2018SpWea..16...37L. doi:10.1002/2017SW001795.
  31. ^ Hattori, Kentaro; H. Hayakawa; Y. Ebihara (2020). "The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun". Astrophys. J. arXiv:2001.04575. doi:10.3847/2041-8213/ab6a18.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  32. ^ Phillips, Tony (July 29, 2020). "The Solar Minimum Superstorm of 1903". SpaceWeatherArchive. SpaceWeather.com. Retrieved 2020-09-16.
  33. ^ Love, Jeffrey J.; H. Hayakawa; E. W. Cliver (2019). "On the Intensity of the Magnetic Superstorm of September 1909". Space Weather. 17 (1): 37–45. Bibcode:2019SpWea..17...37L. doi:10.1029/2018SW002079.
  34. ^ Silverman, S.M.; E.W. Cliver (2001). "Low-latitude auroras: the magnetic storm of 14–15 May 1921". J. Atmospheric Sol.-Terr. Phys. 63 (5): 523–535. Bibcode:2001JASTP..63..523S. doi:10.1016/S1364-6826(00)00174-7.
  35. ^ Jeffrey J. Love; Hisashi Hayakawa; Edward W. Cliver (2019). "Intensity and Impact of the New York Railroad Superstorm of May 1921". Space Weather. 17 (8): 1281–1292. Bibcode:2019SpWea..17.1281L. doi:10.1029/2019SW002250.
  36. ^ Love, Jeffrey J.; Coïsson, P. (15 Sep 2016). "The Geomagnetic Blitz of September 1941". Eos. 97. doi:10.1029/2016EO059319.
  37. ^ Meyer, P.; Parker, E. N.; Simpson, J. A (1956). "Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space". Phys. Rev. 104 (3): 768–83. Bibcode:1956PhRv..104..768M. doi:10.1103/PhysRev.104.768.
  38. ^ Belov, A.; E. Eroshenko; H. Mavromichalaki; C. Plainaki; V. Yanke (15 September 2005). "Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956" (PDF). Annales Geophysicae. 23 (6): 2281–2291. Bibcode:2005AnGeo..23.2281B. doi:10.5194/angeo-23-2281-2005.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ Usoskin, Ilya G.; Koldobskiy, Sergey A.; Kovaltsov, Gennady A.; Rozanov, Eugene V.; Sukhodolov, Timophei V.; Mishev, Alexander L.; Mironova, Irina A. (2020). "Revisited reference solar proton event of 23‐Feb‐1956: Assessment of the cosmogenic‐isotope method sensitivity to extreme solar events". Journal of Geophysical Research: Space Physics. doi:10.1029/2020JA027921.
  40. ^ a b c d Stanislawska, Iwona; T. L. Gulyaeva; O. Grynyshyna‐Poliuga; L. V. Pustovalova (2018). "Ionospheric Weather During Five Extreme Geomagnetic Superstorms Since IGY Deduced With the Instantaneous Global Maps GIM‐foF2". Space Weather. 16 (2): 2068–2078. Bibcode:2018SpWea..16.2068S. doi:10.1029/2018SW001945.
  41. ^ Knipp, Delores J.; A. C. Ramsay; E. D. Beard; A. L. Boright; W. B. Cade; I. M. Hewins; R. McFadden; W. F. Denig; L. M. Kilcommons; M. A. Shea; D. F. Smart (2016). "The May 1967 Great Storm and Radio Disruption Event: Extreme Space Weather and Extraordinary Responses". Space Weather. 14 (9): 614–633. Bibcode:2016SpWea..14..614K. doi:10.1002/2016SW001423.
  42. ^ Knipp, Delores J.; B. J. Fraser; M. A. Shea; D. F. Smart (2018). "On the Little‐Known Consequences of the 4 August 1972 Ultra‐Fast Coronal Mass Ejecta: Facts, Commentary and Call to Action". Space Weather. 16 (11): 1635–1643. Bibcode:2018SpWea..16.1635K. doi:10.1029/2018SW002024.
  43. ^ Deffree, Suzanne (16 Aug 2013). "Solar flare impacts microchips, August 16, 1989". EDN.
  44. ^ a b Katamzi-Joseph, Zama Thobeka; J. B. Habarulema; M. Hernández-Pajares (2017). "Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001". Space Weather. 15 (9): 1177–90. Bibcode:2017SpWea..15.1177K. doi:10.1002/2017SW001674. hdl:2117/115052.
  45. ^ Weaver, Michael; W. Murtagh; et al. (2004). Halloween Space Weather Storms of 2003 (PDF). NOAA Technical Memorandum. Vol. OAR SEC-88. Boulder, CO: Space Environment Center. OCLC 68692085. Archived from the original (PDF) on 2011-07-28.
  46. ^ Balch, Christopher; et al. (2004). Service Assessment: Intense Space Weather Storms October 19 – November 07, 2003 (PDF). NOAA Technical Memorandum. Silver Spring, MD: Department of Commerce.
  47. ^ Mitthumsiri, W.; A. Seripienlert; U. Tortermpun; P.-S. Mangeard; A. Sáiz; D. Ruffolo; R. Macatanga (2017). "Modeling polar region atmospheric ionization induced by the giant solar storm on 20 January 2005". J. Geophys. Res. Space Phys. 122 (8): 7946. Bibcode:2017JGRA..122.7946M. doi:10.1002/2017JA024125.
  48. ^ Bieber, J. W.; J. Clem; P. Evenson; R. Pyle; A. Sáiz; D. Ruffolo (2013). "Giant Ground Level Enhancement of Relativistic Solar Protons on 2005 January 20. I. Spaceship Earth Observations". Astrophysical Journal. 771 (92): 92. Bibcode:2013ApJ...771...92B. doi:10.1088/0004-637X/771/2/92.
  49. ^ Thomson, Neil R.; C. J. Rodger; R. L. Dowden (2004). "Ionosphere gives size of greatest solar flare". Geophysical Research Letters. 31 (6): n/a. Bibcode:2004GeoRL..31.6803T. doi:10.1029/2003GL019345.
  50. ^ Thomson, Neil R.; C. J. Rodger; M. A. Clilverd (2005). "Large solar flares and their ionospheric D region enhancements". Journal of Geophysical Research: Space Physics. 110 (A6): A06306. Bibcode:2005JGRA..110.6306T. doi:10.1029/2005JA011008.
  51. ^ Brodrick, David; S. Tingay; M. Wieringa (2005). "X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background". Journal of Geophysical Research: Space Physics. 110 (A9): A09S36. Bibcode:2005JGRA..110.9S36B. doi:10.1029/2004JA010960.
  52. ^ Baker, D. N.; X. Li; A. Pulkkinen; C. M. Ngwira; M. L. Mays; A. B. Galvin; K. D. C. Simunac (2013). "A major solar eruptive event in July 2012: Defining extreme space weather scenarios". Space Weather. 11 (10): 585–91. Bibcode:2013SpWea..11..585B. doi:10.1002/swe.20097.
  53. ^ Ngwira, Chigomezyo M.; A. Pulkkinen; M. Leila Mays; M. M. Kuznetsova; A. B. Galvin; K. Simunac; D. N. Baker; X. Li; Y. Zheng; A. Glocer (2013). "Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?". Space Weather. 11 (12): 671–9. Bibcode:2013SpWea..11..671N. doi:10.1002/2013SW000990. hdl:2060/20150010106.
  54. ^ Ying D. Liu; J. G. Luhmann; P. Kajdič; E. K.J. Kilpua; N. Lugaz; N. V. Nitta; C. Möstl; B. Lavraud; S. D. Bale; C. J. Farrugia; A. B. Galvin (2014). "Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections". Nature Communications. 5 (3481): 3481. arXiv:1405.6088. Bibcode:2014NatCo...5E3481L. doi:10.1038/ncomms4481. PMID 24642508.
  55. ^ Phillips, Tony (2 May 2014). "Carrington-class CME Narrowly Misses Earth". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  56. ^ Phillips, Dr. Tony (23 July 2014). "Near Miss: The Solar Superstorm of July 2012". NASA. Retrieved 26 July 2014.

External links