Jump to content

25 Gigabit Ethernet

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Zac67 (talk | contribs) at 15:59, 10 November 2022 (Reverted 1 edit by 103.77.45.58 (talk) to last revision by Kvng). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

25 Gigabit Ethernet and 50 Gigabit Ethernet are standards for Ethernet connectivity in a datacenter environment, developed by IEEE 802.3 task forces 802.3by[1] and 802.3cd[2] and are available from multiple vendors.

History

An industry consortium, 25G Ethernet Consortium,[3] was formed by Arista, Broadcom, Google, Mellanox Technologies and Microsoft in July 2014 to support the specification of single-lane 25-Gbit/s Ethernet and dual-lane 50-Gbit/s Ethernet technology. The 25G Ethernet Consortium specification draft was completed in September 2015 and uses technology from IEEE Std. 802.3ba and IEEE Std. 802.3bj.

In November 2014, an IEEE 802.3 task force was formed to develop a single-lane 25-Gbit/s standard,[4][5] and in November 2015, a study group was formed to explore the development of a single-lane 50-Gbit/s standard.[6]

In May 2016, an IEEE 802.3 task force was formed to develop a single-lane 50 Gigabit Ethernet standard.[2]

On June 30, 2016, the IEEE 802.3by standard was approved by The IEEE-SA Standards Board.[7]

On November 12, 2018, the IEEE P802.3cn Task Force started working to define PHY supporting 50 Gbit/s operation over at least 40 km of SMF.[8]

The IEEE 802.3cd standard was approved on December 5, 2018.

On December 20, 2019, the IEEE 802.3cn standard was published. [9]

On April 6, 2020, 25 Gigabit Ethernet Consortium has rebranded to Ethernet Technology Consortium, and it announces 800 Gigabit Ethernet (GbE) specification.[10]

On June 4, 2020, the IEEE approved IEEE 802.3ca which allows for symmetric or asymmetric operation with downstream speeds of 25 Gbps or 50 Gbps, and upstream speeds of 10 Gbps, 25 Gbps, or 50 Gbps over passive optical networks.[11][12]

25 Gigabit Ethernet

The IEEE 802.3by standard uses technology defined for 100 Gigabit Ethernet implemented as four 25-Gbit/s lanes (IEEE 802.3bj).[13][14] The IEEE 802.3by standard several single-lane variations.[15]

Legend for fibre-based PHYs[16]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
25 Gigabit Ethernet (25 GbE) - (Data rate: 25 Gbit/s - Line code: 64b/66b with and without RS-FEC(528,514) × NRZ - Line rate: 25.78125 GBd - Full-Duplex) [17]
25GAUI 802.3by-2016
(CL109A/B)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 1 PCBs
25GBASE-KR 802.3by-2016
(CL111)
current Cu-Backplane 1 1 N/A 1 PCBs
25GBASE-KR-S 802.3by-2016
(CL111)
current Cu-Backplane 1 1 N/A 1 PCBs;
without RS-FEC (802.3by CL108)
25GBASE-CR
Direct Attach
802.3by-2016
(CL110)
current twinaxial
balanced
SFP28
(SFF-8402)
SFP28 5 2 N/A 1 Data centres (inter-rack)
25GBASE-CR-S
Direct Attach
802.3by-2016
(CL110)
current twinaxial
balanced
SFP28
(SFF-8402)
SFP28 3 1 N/A 1 Data centres (in-rack);
without RS-FEC (802.3by CL108)
25GBASE-SR 802.3by-2016
(CL112)
current Fibre
850 nm
LC SFP28 OM3: 70 2 1 1
OM4: 100
25GBASE-LR 802.3cc-2017
(CL114)
current Fibre
1295 – 1325 nm
LC SFP28 OS2: 10k 2 1 1
25GBASE-ER 802.3cc-2017
(CL114)
current Fibre
1550 nm
LC SFP28 OS2: 40k 2 1 1
25GBASE-T
25GBASE-T, a 25-Gbit/s standard over twisted pair, was approved alongside 40GBASE-T within IEEE 802.3bq.[18][19]
Comparison of twisted-pair-based Ethernet physical transport layers (TP-PHYs)[16]
Name Standard Status Speed (Mbit/s) Pairs required Lanes per direction Bits per hertz Line code Symbol rate per lane (MBd) Bandwidth Max distance (m) Cable Cable rating (MHz) Usage
25GBASE-T 802.3bq-2016 (CL113) current 25000 4 4 6.25 PAM-16 RS-FEC (192, 186) LDPC 2000 1000 30 Cat 8 2000 LAN, Data centres

50 Gigabit Ethernet

The IEEE P802.3cd [2] standard defines a Physical Coding Sublayer (PCS) in Clause 133 which after encoding gives a data rate of 51.5625 Gbit/s. 802.3cd also defines an RS-FEC for forward error correction in Clause 134 which after FEC encoding gives a data rate of 53.125 Gbit/s. It is not possible to transmit 53.125 Gbit/s over an electrical interface while maintaining suitable signal integrity so four-level pulse-amplitude modulation (PAM4) is used to map pairs of bits into a single symbol. This leads to an overall baud rate of 26.5625 GBd for 50 Gbit/s per lane Ethernet. PAM4 encoding for 50G Ethernet is defined in Clause 135 of the 802.3 standard.

Legend for fibre-based PHYs[16]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
50 Gigabit Ethernet (50 GbE) - (Data rate: 50 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 26.5625 GBd - Full-Duplex) [20][21]
LAUI-2 802.3cd-2018
(CL135B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 2 PCBs;
Line code: NRZ (no FEC)
Line rate: 2x 25.78125 GBd = 51.5625 GBd
50GAUI-2 802.3cd-2018
(CL135D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 2 N/A 2 PCBs;
Line code: NRZ (FEC encoded)
Line rate: 2x 26.5625 GBd = 53.1250 GBd
50GAUI-1 802.3cd-2018
(CL135F/G)
current Chip-to-chip/
Chip-to-module interface
0.25 1 N/A 1 PCBs
50GBASE-KR 802.3cd-2018
(CL133/137)
current Cu-Backplane 1 1 N/A 1 PCBs;
total channel insertion loss ≤ 30 dB at half sampling rate = 13.28125 GHz (Nyquist).
50GBASE-CR 802.3cd-2018
(CL133/136)
current twinaxial
balanced
QSFP28,
microQSFP,
QSFP-DD,
OSFP

(SFF-8635)
QSFP28 3 1 N/A 1 Data centres (in-rack)
50GBASE-SR 802.3cd-2018
(CL133/138)
current Fibre
850 nm
LC QSFP+ OM3: 70 2 1 1
OM4: 100
50GBASE-LR 802.3cd-2018
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 10k 2 1 1
50GBASE-FR 802.3cd-2018
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 2k 2 1 1
50GBASE-ER 802.3cn-2019
(CL133/139)
current Fibre
1304.5 – 1317.5 nm
LC QSFP+ OS2: 40k 2 1 1

Availability

As of June 2016, 25 Gigabit Ethernet equipment is available on the market using the SFP28 and QSFP28 transceiver form factors. Direct attach SFP28-to-SFP28 copper cables in 1-, 2-, 3- and 5-meter lengths are available from several manufacturers, and optical transceiver manufacturers have announced 1310 nm "LR" optics intended for reach distances of 2 to 10 km over two strands of standard singlemode fiber, similar to existing 10GBASE-LR optics, as well as 850 nm "SR" optics intended for short reach distances of 100 m over two strands of OM4 multimode fiber, similar to existing 10GBASE-SR optics.[citation needed]

See also

References

  1. ^ "IEEE P802.3by 25 Gb/s Ethernet Task Force". Ieee802.org. Retrieved 19 November 2021.
  2. ^ a b c "IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force". Ieee802.org. Retrieved 19 November 2021.
  3. ^ "25G Ethernet Consortium". Retrieved 2017-09-17.
  4. ^ Rick Merritt (2014-07-21). "25G Ethernet on Tap at IEEE". Retrieved 2014-09-29.
  5. ^ "IEEE 802.3 25 Gb/s Ethernet Study Group Public Area". IEEE 802.3. 2014-10-29. Retrieved 2014-12-31.
  6. ^ "Joint Webpage for IEEE 802.3 50 Gb/s Ethernet Over a Single Lane and Next Generation 100 Gb/s and 200 Gb/s Ethernet Study Group IEEE 802.3 200 Gb/s Ethernet Single-mode Fiber Study Group". Ieee802.org. Retrieved 2017-09-17.
  7. ^ "[STDS-802-3-25G] IEEE Std 802.3by-2016 Standard Approved!". Ieee802.org. 2016-06-30.
  8. ^ "Adopted Objectives" (PDF). Ieee802.org. Retrieved 19 November 2021.
  9. ^ "[802.3_DIALOG] March 2020 plenary meeting announcement". Ieee802.org. Retrieved 19 November 2021.
  10. ^ "25 Gigabit Ethernet Consortium Rebrands to Ethernet Technology Consortium; Announces 800 Gigabit Ethernet (GbE) Specification". Ethernettechnologyconsortium.org. 2020-04-06.
  11. ^ "IEEE 802.3ca-2020 - IEEE Standard for Ethernet Amendment 9". IEEE. 2020-07-03.
  12. ^ Knittle, Curtis (2020-07-23). "25G/50G-EPON Standard Crosses the Finish Line – Enhancing Fiber Deployments as Part of Cable's 10G Platform". CableLabs.
  13. ^ "Overview 25G & 50G Ethernet Specification, Draft 1.4" (PDF). 25G Ethernet Consortium. 2014-09-11. Retrieved 2014-12-31.
  14. ^ Stephen Hardy (July 23, 2014). "IEEE launches 25 Gigabit Ethernet Study Group". LightWave. Retrieved 2014-09-29.
  15. ^ "Adopted & Approved Objectives: 25 Gb/s Ethernet over a single lane for server interconnect" (PDF). Ieee802.org. Retrieved 2017-09-17.
  16. ^ a b c Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
  17. ^ "Evolution of Ethernet Speeds: What's New and What's Next" (PDF). Alcatel-Lucent. 2015-06-03. Retrieved 2018-08-28.
  18. ^ "IEEE P802.3bq 25G/40GBASE-T Task Force". Ieee802.org. Retrieved 2016-02-08.
  19. ^ "Approval of IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, IEEE Std 802.3bp-2016 and IEEE Std 802.3br-2016". Ieee802.org. IEEE. 2016-06-30.
  20. ^ "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
  21. ^ "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.