# Axiom of countable choice

(Redirected from Countable choice)
Each set in the countable sequence of sets (Si) = S1, S2, S3, ... contains a nonzero, and possibly infinite (or even uncountably infinite), number of elements. The axiom of countable choice allows us to arbitrarily select a single element from each set, forming a corresponding sequence of elements (xi) = x1, x2, x3, ...

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that any countable collection of non-empty sets must have a choice function. I.e., given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, then there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.

The axiom of countable choice ACω is weaker than the axiom of choice (AC), which states that every collection of non-empty sets must have a choice function. The axiom of choice implies the axiom of dependent choice (DC), and DC is sufficient to show ACω. However, ACω is strictly weaker than DC,[1] and DC is strictly weaker than AC. Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice. ACω holds in the Solovay model.

ZF + ACω suffices to prove that the union of countably many countable sets is countable. It also suffices to prove that every infinite set is Dedekind-infinite (equivalently: has a countably infinite subset).

ACω is particularly useful for the development of analysis, where many results depend on having a choice function for a countable collection of sets of real numbers. For instance, in order to prove that every accumulation point x of a set SR is the limit of some sequence of elements of S\{x}, one uses (a weak form of) the axiom of countable choice. When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω. For other statements equivalent to ACω, see (Herrlich 1997)[2] and (Howard/Rubin 1998).[3]

A common misconception is that countable choice has an inductive nature and is therefore provable as a theorem (in ZF, or similar, or even weaker systems) by induction. However, this is not the case; this misconception is the result of confusing countable choice with finite choice for a finite set of size n (for arbitrary n), and it is this latter result (which is an elementary theorem in combinatorics) that is provable by induction. However, some countably infinite sets of nonempty sets can be proven to have a choice function in ZF without any form of the axiom of choice. These include Vω− {Ø} and the set of proper and bounded open intervals of real numbers with rational endpoints.

## Use

As an example of an application of ACω, here is a proof (from ZF+ACω) that every infinite set is Dedekind-infinite:

Let X be infinite. For each natural number n, let An be the set of all 2n-element subsets of X. Since X is infinite, each An is nonempty. A first application of ACω yields a sequence (Bn : n=0,1,2,3,...) where each Bn is a subset of X with 2n elements.
The sets Bn are not necessarily disjoint, but we can define
C0 = B0
Cn= the difference of Bn and the union of all Cj, j<n.
Clearly each set Cn has at least 1 and at most 2n elements, and the sets Cn are pairwise disjoint. A second application of ACω yields a sequence (cn: n=0,1,2,...) with cnCn.
So all the cn are distinct, and X contains a countable set. The function that maps each cn to cn+1 (and leaves all other elements of X fixed) is a 1-1 map from X into X which is not onto, proving that X is Dedekind-infinite.

## References

1. ^ Jech T.J., The Axiom of Choice, North Holland, 1973.
2. ^ Horst Herrlich, Choice principles in elementary topology and analysis, Comment.Math.Univ.Carolinae 38,3 (1997), pp. 545-545
3. ^ Paul Howard and Jean E. Rubin. Consequences of the axiom of choice. Providence, R.I.: American Mathematical Society, 1998.