Dilbit

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Sunray (talk | contribs) at 02:46, 27 June 2013 (bypassed redirect). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Dilbit (diluted bitumen) is a means of transporting highly viscous hydrocarbon. Per the Alberta Oil Sands Bitumen Valuation Methodology, "Dilbit Blends" means "Blends made from heavy crudes and/or bitumens and a diluent usually condensate, for the purpose of meeting pipeline viscosity and density specifications, where the density of the diluent included in the blend is less than 800 kg/m3."[1] If the diluent density is greater than or equal to 800 kg/m3, the diluent is typically synthetic crude and accordingly the blend is called synbit.[2]

Why dilute bitumen?

Bitumen and heavy oils are often produced from remote deposits such as the Athabasca oil sands in Alberta, Canada and the Orinoco tar sands in Venezuela. Before 1980, most produced bitumen was transported by truck, but trucking is seasonally restricted and relatively inefficient and expensive compared to pipeline transport. However, bitumen in its undiluted state is too viscous and dense to be transported by pipeline. To create a fluid capable of transportation by pipeline, bitumen must be mixed with a fluid that has much lower viscosity and will keep bitumen from precipitating out of the mixture. By 1985 and demonstrating the effectiveness of dilbit, Alberta Energy Company was operating dual pipelines to transport diluent from Edmonton to Cold Lake and dilbit from Cold Lake to Edmonton.[3] Dilbit is now also transported by rail.[4]

How is bitumen diluted?

The most common diluent used to dilute bitumen is natural gas condensate (NGC), especially the naphtha component.[5] Due to insufficient quantity of natural gas condensate in Alberta, bitumen shippers also use refined naptha and synthetic crude oil (SCO) as diluent, and import a considerable amount from the U.S.[6] Although SCO requires a higher volume percentage to achieve the same viscosity, at least one study found that SCO provides better blend stability than NGC.[7] Shippers dilute bitumen before shipment in order to meet viscosity and density requirements found in common carrier pipeline tariff rules. A National Energy Board study assumed a standard dilbit containing 33% condensate (resulting in product with "21.5 °API and sulphur content of 3.3 percent") and synbit containing 50% SCO.[8][9][10][11] By selecting different diluent types and blend ratios, bitumen shippers attempt to lower component costs, increase blend value, and maintain pipeline transportability. The blend ratio may consist of 25 to 55% diluent by volume, depending on characteristics of the bitumen and diluent, pipeline specifications, operating conditions, and refinery requirements.[3]

Froth treatment which removes heavy constituents rather than adding lighter ones is another method.[12]

What happens to the dilbit?

Diluent can be removed from dilbit by distillation and reused. Alternatively, the entire dilbit can be refined. Dilbit and synbit are typically processed by refineries as heavy or medium crudes, respectively.[8] As dilbit contains hydrocarbons at extreme ends of the viscosity range, the material can be more difficult to process than typical crude oil. Therefore, dilbit normally constitutes only a small portion of a refinery's total feedstock.

Evaporation

In the event of a spill such as the Kalamazoo River oil spill the light components may evaporate leaving the heavy components behind. In that instance, as the spill was into a waterway, the heavier components sank making cleanup difficult.[13]

Alternatives to diluent

  • Heated pipelines
  • Constructing upgraders closer to production

See also

References

  1. ^ Alberta Oil Sands Bitumen Valuation Methodology (pdf), vol. 2008–9995, Calgary, Alberta: Canadian Association of Petroleum Producers, 2008 {{citation}}: Unknown parameter |month= ignored (help)
  2. ^ Canada's Oil Sands: Opportunities and Challenges to 2015 (PDF) (Energy Market Assessment). Calgary, Alberta: National Energy Board. 2004. pp. 115–118. ISBN 0-662-36880-0. Retrieved 14 Mar 2012. {{cite book}}: Unknown parameter |month= ignored (help) Condensate: "A mixture comprised mainly of pentanes and heavier hydrocarbons recovered as a liquid from field separators, scrubbers or other gathering facilities or at the inlet of a natural gas processing plant before the gas is processed." Dilbit: "Bitumen that has been reduced in viscosity through addition of a diluent (or solvent) such as condensate or naphtha." Diluent: "Any lighter hydrocarbon, usually pentanes plus, added to heavy crude oil or bitumen in order to facilitate its transport on crude oil pipelines." Synbit: "A blend of bitumen and synthetic crude oil that has similar properties to medium sour crude." "Synthetic crude oil is a mixture of hydrocarbons generally similar to light sweet crude oil, derived by upgrading crude bitumen or heavy crude oil."
  3. ^ a b Walker, Ian C. (1998), Marketing Challenges for Canadian Bitumen (pdf), Tulsa, OK: International Centre for Heavy Hydrocarbons, p. 2
  4. ^ Harrison, Lynda (2011). "Riding the Rails, Oil companies climb aboard potential alternative to pipelines". Oil & Gas Inquirer. Calgary, Alberta: JuneWarren-Nickle's Energy Group. Retrieved 14 Mar 2012. {{cite news}}: Unknown parameter |month= ignored (help)
  5. ^ "Altex model". Altex Energy Ltd. Retrieved June 16, 2012. On December 2, 2009, Purvin and Gertz reported that Alberta produces about 80,000 bbls/d of natural gasoline (primarily pentane and hexane) and another 65,000 bbls/d of Naphtha from its indigenous natural gas. These hydrocarbons have been added to bitumen (typically a 10-12 API product) to produce a pipelinable product called dilbit (19-21 API). In recent years the indigenous supply of natural gasoline not been sufficient to meet the demand. To meet bitumen producer's requirements, about 40,000 bbls/d of natural gasoline has been imported into Alberta, primarily using rail road tank cars. The National Energy Board ("NEB") tracks these volumes and in a recent publication shows that it expects the demand for natural gasoline to grow by about 27,000 bpd each year for the next ten years.
  6. ^ Ross, Elsie (13 Sep 2012). "New Diluent Sources Needed For Forecast Growth In Bitumen". The Daily Oil Bulletin. Junewarren-Nickle’s Energy Group. Oilsands operators have been importing diluent since about 2004 as the required volumes of pentanes plus and condensate have significantly outpaced domestic production capacity, says the CERI study. In 2010, an estimated 260,000 bbls per day of diluent was required while total Canadian domestic production was about 160,000 bbls per day, indicating that close to 40 per cent (100,000 bbls per day) of the required diluent needed to be imported, says the study.
  7. ^ Rahimi, Parviz; Alem, Teclemariam (10 Feb 2010). Crude Oil Compatibility and Diluent Evaluation for Pipelining (pdf). Joint CCQTA/COQA meeting (New Orleans). Devon, Alberta: National Centre for Upgrading Technology. Retrieved 18 Jun 2011.
  8. ^ a b Canada's Oil Sands: Opportunities and Challenges to 2015 (PDF) (Energy Market Assessment). Calgary, Alberta: National Energy Board. 2004. ISBN 0-662-36880-0. Retrieved 14 Mar 2012. {{cite book}}: Unknown parameter |month= ignored (help)
  9. ^ Crude Oil Forecast, Markets and Pipeline Expansions (PDF), Calgary, Alberta: Canadian Association of Petroleum Producers, 2007, p. 5, retrieved 16 June 2012, The DilBit blend is typically made up of three parts bitumen and one part condensate. SynBit blend is comprised of roughly fifty percent synthetic and fifty percent bitumen. {{citation}}: Unknown parameter |month= ignored (help)
  10. ^ Segato, Randy, Quality Guidelines for Western Canadian Condensate (PDF), Calgary, Alberta: Canadian Association of Petroleum Producers, p. 6, retrieved 16 June 2012, Bitumen and Heavy Crude Oil must be diluted to meet pipeline viscosity and density specifications. Two blend type conventions
    •upgraded light synthetic blends (SYNBIT, ~50/50 ratio) or
    •heavy and bitumen diluted with condensate (DILBIT, ~25/75 ratio) {{citation}}: line feed character in |quote= at position 75 (help)
  11. ^ Crandall, G. R. (17 Dec 2004), Phase II―Refined Products and Petrochemicals from Bitumen (PDF), R. A. McKetta, G. A. Houlton, J. D. Wright, O. Malbec, Purvin & Gertz, Inc., p. 52, retrieved 16 June 2012, We assumed that the bitumen delivered to the Alberta upgrader would be diluted with C5+ condensate with a blend ratio of 26% C5+ and 74% bitumen needed to achieve the pipeline viscosity specification of 350 cst and 940 kg/m3 density. Athabasca bitumen has a density of 8.4 API and 4.8 weight % sulfur. SCO has a density of 35 API and 0.1 weight % sulfur.
  12. ^ Jeff Lewis (November 8, 2011). "SNC-Lavalin to build $650 million froth treatment plant: Client not disclosed, but reported to be CNRL". Alberta Oil. Retrieved April 28, 2013.
  13. ^ Elizabeth Shogren (August 16, 2012). "When This Oil Spills, It's 'A Whole New Monster'". NPR All Things Considered. Retrieved June 1, 2013. Tar sands oil has to be diluted to make it liquid enough to flow through a pipeline. But once it's back out in the environment, the chemicals that liquefied it evaporate. That leaves the heavy stuff behind.

External links