# Edge (geometry)

 Three edges AB, BC, and CA, each between two vertices of a triangle. A polygon is bounded by edges; this square has 4 edges. Every edge shares two faces in a polyhedron, like this cube. Every edge shares three or more faces in a 4-polytope, as seen in this projection of a tesseract.

In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope.[1] In a polygon, an edge is a line segment on the boundary.[2] (Thus a segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.) In a polyhedron or more generally a polytope, an edge is a line segment where two two-dimensional faces meet.[3]

## Relation to edges in graphs

In graph theory, an edge is an abstract object connecting two graph vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its skeleton or edge-skeleton, a graph whose vertices are the geometric vertices of the polyhedron and whose edges correspond to the geometric edges.[4] Conversely, the graphs that are skeletons of three-dimensional polyhedra can be characterized by Steinitz's theorem as being exactly the 3-vertex-connected planar graphs.[5]

## Incidences with other faces

In a polygon, two edges meet at each vertex; more generally, by Balinski's theorem, at least d edges meet at every vertex of a d-dimensional convex polytope.[6] Similarly, in a polyhedron, exactly two two-dimensional faces meet at every edge,[7] while in higher dimensional polytopes three or more two-dimensional faces meet at every edge.

## Alternative terminology

In the theory of high-dimensional convex polytopes, a facet or side of a d-dimensional polytope is one of its (d − 1)-dimensional features, a ridge is a (d − 2)-dimensional feature, and a peak is a (d − 3)-dimensional feature. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, and the edges of a 4-dimensional polychoron are its peaks.[8]