Glyoxal

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 78.14.251.124 (talk) at 23:00, 6 February 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Glyoxal
Skeletal formula of glyoxal
Skeletal formula of glyoxal
Space-filling model of glyoxal
Space-filling model of glyoxal
Names
IUPAC name
ethanedial
Other names
ethane-1,2-dione
Identifiers
3D model (JSmol)
ECHA InfoCard 100.003.160 Edit this at Wikidata
  • O=CC=O
Properties
C2H2O2
Molar mass 58.04 g/mol
Density 1.27 g/cm3
Melting point 15 °C (59 °F; 288 K)
Boiling point 51 °C (124 °F; 324 K)
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Glyoxal is an organic compound with the formula OCHCHO. This yellow colored liquid is the smallest dialdehyde (two aldehyde groups).

Production

Commercial glyoxal is prepared either by the gas phase oxidation of ethylene glycol in the presence of a silver or copper catalyst or by the liquid phase oxidation of acetaldehyde with nitric acid. Global nameplate capacity is ~220,000 tons, with production rates less, due to over-capacity mostly in Asia. Most production is done via the gas phase oxidation route.

The first commercial glyoxal source was in Lamotte, France, started in 1960 and currently owned by Clariant. The single largest commercial source is BASF in Ludwigshafen, Germany at ~60,000 tons/annum. Only 2 production sites (Geismer, LA and Charlotte, NC) exist in the Americas. Significant recent capacity has been added in China. Commercial bulk glyoxal is made and reported as a 40%-strength solution.

Glyoxal is prepared in the lab by oxidation of acetaldehyde with selenious acid.[1]

The preparation of anhydrous glyoxal entails heating solid glyoxal hydrate(s) with phosphorus pentoxide and condensing the vapors in a cold trap.[2]

Applications

Paper coatings and textiles use large amounts of glyoxal as a crosslinker for starch-based formulations and as a starting material with ureas for wrinkle-resistant chemical treatments. It is used as a solubilizer and cross-linking agent in polymer chemistry:

  • proteins (leather tanning process)
  • collagen
  • cellulose derivatives (textiles)
  • hydrocolloids
  • starch (paper coatings)

It is a valuable building block in organic synthesis, especially in the synthesis of heterocycles such as imidazoles.[3] A convenient form of the reagent for use in the laboratory is its bis-hemiacetal with ethylene glycol, 1,4-dioxane-2,3-diol. This compound is commercially available.

Speciation in solution

Glyoxal is supplied typically as a 40% aqueous solution. Like other small aldehydes, glyoxal forms hydrates. Furthermore, the hydrates condense to give a series of oligomers, the structures of which remain uncertain. For most applications, the exact nature of the species in solution is inconsequential. At least two hydrates of glyoxal are sold commercially:

  • glyoxal dimer, dihydrate: [(CHO)2]2[H2O]2, 1,4-dioxane-trans-2,3-diol (CAS# 4845-50-5, m.p. 91-95 C)
  • glyoxal trimer, dihydrate: [(CHO)2]3(H2O)2 (CAS# 4405-13-4).

It is estimated that, at concentrations less than 1 M, glyoxal exists predominantly as the monomer or hydrates thereof, i.e., OCHCHO, OCHCH(OH)2, or (HO)2CHCH(OH)2. At concentrations >1 M, dimers predominate. These dimers are probably dioxalanes, with the formula [(HO)CH]2O2CHCHO.[4] Dimer and trimer can precipitate, due to lower solubility, from solution at <40 F.

Other occurrences

Glyoxal is an inflammatory compound formed when cooking oils and fats are heated to high temperatures.

References

  1. ^ Ronzio, A. R.; Waugh, T. D. (1955). "Glyoxal Bisulfite". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 438.
  2. ^ Harries, C.; Temme, F. (1907). "Über monomolekulares und trimolekulares Glyoxal". Berichte. 40: 165–172. doi:10.1002/cber.19070400124.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    A quote from this paper is instructive of the chemistry of that era "Man erhitzt nun das Glyoxal-Phosphorpentoxyd-Gemisch mit freier Flamme und beobachtet bald, dass sich unter Schwarzfärbung des Kolbeninhalte ein flüchtiges grünes Gas bildet, welches sich in der gekühlten Vorlage zu schönen Krystallen von gelber Farbe kondensiert." (One heats the mixture of (crude) glyoxal and P4O10 with an open flame and soon observes that, upon blackening of the contents, a mobile green gas, which condenses in the cooled flask as beautiful yellow crystals).
  3. ^ Snyder, H. R.; Handrick, R. G.; Brooks, L. A. (1955). "Imidazole". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 471.
  4. ^ Whipple, E. B. (1970). "Structure of Glyoxal in Water". J. Am. Chem. Soc. 90: 7183–7186. doi:10.1021/ja00727a027.

External links