Jump to content

Killing horizon

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by GeodesicallyIncomplete (talk | contribs) at 16:21, 25 November 2022 (Added a note regarding Kerr-Newman black holes, since previously it seemed that the only Killing horizon was the ergosphere, but the event horizon can also be obtained through a different choice of Killing vector field. There were no references regarding this in this section previously, so I haven’t provided one, but if pressed to do so, I would be able to.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field (both are named after Wilhelm Killing).[1] It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.

After Hawking showed that quantum field theory in curved spacetime (without reference to the Einstein field equations) predicted that a black hole formed by collapse will emit thermal radiation, it became clear that there is an unexpected connection between spacetime geometry (Killing horizons) and thermal effects for quantum fields. In particular, there is a very general relationship between thermal radiation and spacetimes that admit a one-parameter group of isometries possessing a bifurcate Killing horizon, which consists of a pair of intersecting null hypersurfaces that are orthogonal to the Killing field.[2]

Flat spacetime

In Minkowski space-time, in pseudo-Cartesian coordinates with signature an example of Killing horizon is provided by the Lorentz boost (a Killing vector of the space-time)

The square of the norm of is

Therefore, is null only on the hyperplanes of equations

that, taken together, are the Killing horizons generated by .[3]

Black hole Killing horizons

Exact black hole metrics such as the Kerr–Newman metric contain Killing horizons, which can coincide with their ergospheres. For this spacetime, the corresponding Killing horizon is located at

In the usual coordinates, outside the Killing horizon, the Killing vector field is timelike, whilst inside it is spacelike.

Furthermore, considering a particular linear combination of and , both of which are Killing vector fields, gives rise to a Killing horizon that coincides with the event horizon.

Associated with a Killing horizon is a geometrical quantity known as surface gravity, . If the surface gravity vanishes, then the Killing horizon is said to be degenerate.[3]

The temperature of Hawking radiation, found by applying quantum field theory in curved spacetime to black holes, is related to the surface gravity by with the Boltzmann constant and the reduced Planck constant.

Cosmological Killing horizons

De Sitter space has a Killing horizon at , which emits thermal radiation at temperature .

References

  1. ^ Reall, Harvey (2008). black holes (PDF). p. 17. Archived from the original (PDF) on 2015-07-15. Retrieved 2015-07-15.
  2. ^ Kay, Bernard S.; Wald, Robert M. (August 1991). "Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon". Physics Reports. 207 (2): 49-136. doi:10.1016/0370-1573(91)90015-E.
  3. ^ a b Chruściel, P.T. "Black-holes, an introduction". In "100 years of relativity; space-time structures: Einstein and beyond", edited by A. Ashtekar, World Scientific, 2005.