Laurent Nottale

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Laurent Nottale Nottale.jpg
Born (1952-07-29)July 29, 1952
Residence France
Fields Physics
Institutions CNRS, Paris observatory
Known for Gravitational Lens, Scale relativity

Laurent Nottale (born 29 July 1952) is an astrophysicist, a director of research at CNRS, and a researcher at the Paris Observatory. He is the author and inventor of the theory of Scale Relativity which aims to unify quantum physics and relativity theory.

Scientific career[edit]

Nottale began his professional work in the domain of general relativity. He defended his PhD Thesis in June 1980, entitled "Perturbation of the Hubble relation by clusters of galaxies", in which he showed that clusters of galaxies as a whole may act as gravitational lenses on distant sources.[1] Some of these important results were reported in Nature.[2][3]

He also published a popular book L'Univers et la Lumière, Flammarion, Nouvelle Bibliothèque Scientifique 1994, Champs 1998) for which he received a prize in 1995 (Prix du livre d'Astronomie Haute-Maurienne-Vanoise).

One can distinguish two periods in Nottale's scientific career.[4] The first one from 1975 to 1991 is dedicated to the study of gravitational lenses. This first period allowed him to become expert in general relativity, a decisive requirement for the second period. The second period, from 1984 until today is focused on developing Scale Relativity, which aims to unify quantum physics and relativity theory.

Scale Relativity in a nutshell[edit]

Main article: Scale Relativity

Scale Relativity aims to unify quantum physics and relativity theory by introducing explicitly the scales of observation in physical equations as characterizing the "state of scale" of the coordinate system. This is made possible by the fundamental relative nature of scales: only scale ratios have a physical meaning, never an absolute scale, in the same way as there exists no absolute velocity, but only velocity differences. The analogy between special relativity and scale relativity can be pushed quite far. Einstein introduced parameters of velocity in the observational referential. The theory implies that similar results as special relativity with velocity should apply with the introduction of scales:

  • There exists an unreachable observational length-scale, the Planck scale, as there is in special relativity an unreachable speed, the speed of light.
  • The composition of two scale changes is inferior to the product of these two scales. Similarly, in special relativity, the composition of two speeds is inferior to the sum of those two speeds.

Scale relativity is developed as an extension of Einstein's relativity, and is founded on the same heuristic principle. The core idea is to suppose the existence of trajectories varying according to scale transformations. Those trajectories are not rectifiable, i.e. they are fractal. The apparently disordered motions of particles at the quantum scale are described in terms of motions following fractal geodesics. The key mathematical tool used in the theory are fractals, which Nottale also enriched to be able to model fractal space-time.[5] The theory leads to fundamental results, as well as precise predictions, many of which have been verified with great precision.[6]

Among the theoretical predictions of scale relativity are:

  • Derivation of postulates of quantum mechanics.[7]

Among the applied predictions of scale relativity to date:

  • Prediction of the location of exoplanets
  • Explanation of observed large-scale structures,[8] such as the Titius Bode observation.[9]
  • Relation between mass and charge of the electron

As the New Scientist has suggested, the theory certainly needs closer critical attention, coverage and discussion from the scientific community:

"I do not understand why Nottale's theory has not been given wider coverage or discussion. If he is wrong it needs debunking, if he is right he deserves a Nobel prize." [10]

Awards[edit]

In 1987 he received the prize Digital of the French Society of Astronomy Specialists (Société Française des Spécialistes d'Astronomie). The same year, he also received a prize from the French Academy of Science.[citation needed]

In 1995, his book L'Univers et la Lumière, Flammarion, Nouvelle Bibliothèque Scientifique 1994, received a prize for astronomy writing, Haute-Maurienne-Vanoise (Prix du livre d'Astronomie Haute-Maurienne-Vanoise).[citation needed]

In 2003, he received an award from the Centre for Hyperincursion and Anticipation in Ordered Systems (CASYS, Liège University).

In 2008, he received the best paper award at the Conference on the Evolution and Development of the Universe (EDU 2008).[11]

Bibliography[edit]

Books

  • Scale Relativity And Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics. 2011 1st ed. World Scientific Publishing Company. (ISBN 1848166508)
  • Fractal Space-Time and Micro-physics, Editions World Scientific, May 1993 (ISBN 9810208782) (The reference book about Scale Relativity theory).
  • L'univers et la lumière, Cosmologie classique et mirages gravitationnels, Éditions Flammarion, août 1993 (ISBN 2082111830)
  • La Relativité dans tous ses états : du mouvements aux changements d'échelle, Éditions Hachette, 1998 (ISBN 201279002X)
  • Les arbres de l'évolution, Laurent Nottale, Jean Chaline et Pierre Grou, Éditions Hachette, mars 2000 (ISBN 2012355528)

Papers

More than 100 of his scientific papers are available for download at: http://luth.obspm.fr/~luthier/nottale/ukdownlo.htm

Notes[edit]

  1. ^ in french: "Les lentilles gravitationnelles par amas de galaxies"
  2. ^ Karoji, H., and L. Nottale. 1976. Possible implications of the Rubin-Ford effect. Nature 259, no. 5538 (January 1): 31-33. doi:10.1038/259031a0. http://dx.doi.org/10.1038/259031a0.
  3. ^ Nottale, L., and J. P. Vigier. 1977. Continuous increase of Hubble modulus behind clusters of galaxies. Nature 268, no. 5621: 608-610. doi:10.1038/268608a0. http://dx.doi.org/10.1038/268608a0.
  4. ^ Bontems, Vincent, and Yves Gingras. 2007. De la science normale a la science marginale. Analyse d'une bifurcation de trajectoire scientifique: le cas de la Theorie de la Relativite d'Echelle. Social Science Information 46, no. 4 (December 1): 607-653. doi:10.1177/0539018407082595. http://ssi.sagepub.com/cgi/content/abstract/46/4/607, page 612
  5. ^ See in bibliography (Nottale 1993, chap.3)
  6. ^ For a detailed account of the claims below, see a recent review paper: Nottale, Laurent. 2008. Scale Relativity and Fractal Space-Time: Theory and Applications. Foundations of Science, no. Special Issue of the Conference on the Evolution and Development of the Universe (EDU-2008), [1]
  7. ^ See for example: Nottale, L., and M. N. Celerier. 2007. Derivation of the postulates of quantum mechanics from the first principles of scale relativity. Journal of Physics A-Mathematical and Theoretical 40, no. 48: 14471-14498
  8. ^ For example, about planetary system formation, extrasolar planetary systems structures, galactic structures, planetary nebulae, and extragalactic structures. The details are in Chapter 13, pages 557-672 of Scale Relativity And Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics. 2011 1st ed. World Scientific Publishing Company. (ISBN 1848166508)
  9. ^ Nottale, L., G. Schumacher, and J. Gay. 1997.“Scale Relativity and Quantization of the Solar System.” Astronomy and Astrophysics 322 (June 1): 1018–1025.
  10. ^ http://www.newscientist.com/article/mg19426011.300-scale-relativity.html
  11. ^ Vidal, Clément. 2010. "Introduction to the Special Issue on the Evolution and Development of the Universe." Foundations of Science 15 (2): 95-99. doi:10.1007/s10699-010-9176-9.

See also[edit]

External links[edit]