List of superconductors

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The table showing major parameters of major superconductors of simple structure (numerous metallic alloys are not shown). X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in teslas. "Non-metals" here refers to materials which are normally not considered as metals, but become superconducting upon heavy doping. "BCS" means whether or not the superconductivity is explained within the BCS theory.

Formula TC (K) HC (T) Type BCS References
Metals
Al 1.20 0.01 I yes [1][2][3]
Cd 0.52 0.0028 I yes [2][3]
Ga 1.083 0.0058 I yes [4]
Hf 0.165 I yes [2]
α-Hg 4.15 0.04 I yes [2][3]
β-Hg 3.95 0.04 I yes [2][3]
Ga 1.1 0.005 I yes [2][3]
In 3.4 0.03 I yes [2][3]
Ir 0.14 0.0016[4] I yes [2]
α-La 4.9 I yes [2]
β-La 6.3 I yes [2]
Mo 0.92 0.0096 I yes [2][4]
Nb 9.26 0.82 II yes [2][3]
Os 0.65 0.007 I yes [2]
Pa 1.4 I yes [5]
Pb 7.19 0.08 I yes [2][3]
Re 2.4 0.03 I yes [2][3][6]
Ru 0.49 0.005 I yes [2][3]
Sn 3.72 0.03 I yes [2][3]
Ta 4.48 0.09 I yes [2][3]
Tc 7.46–11.2 0.04 II yes [2][3]
α-Th 1.37 0.013 I yes [2][3]
Ti 0.39 0.01 I yes [2][3]
Tl 2.39 0.02 I yes [2][3]
α-U 0.68 I yes [2][5]
β-U 1.8 I yes [5]
V 5.03 1 II yes [2][3]
α-W 0.015 0.00012 I yes [4][5][7]
β-W 1–4 [7]
Zn 0.855 0.005 I yes [2][3]
Zr 0.55 0.014 I yes [2][3]
Compounds
Ba8Si46 8.07 0.008 II yes [8]
C6Ca 11.5 0.95 II [9]
C6Li3Ca2 11.15 II [9]
C8K 0.14 II [9]
C8KHg 1.4 II [9]
C6K 1.5 II [10]
C3K 3.0 II [10]
C3Li <0.35 II [10]
C2Li 1.9 II [10]
C3Na 2.3–3.8 II [10]
C2Na 5.0 II [10]
C8Rb 0.025 II [9]
C6Sr 1.65 II [9]
C6Yb 6.5 II [9]
C60Cs2Rb 33 II yes [11]
C60K3 19.8 0.013 II yes [12][8]
C60RbX 28 II yes [13]
Diamond:B 11.4 4 II yes [14][15][16]
FeB4 2.9 I [17]
InN 3 II yes [18]
In2O3 3.3 ~3 II yes [19]
Si:B 0.4 0.4 II yes [20]
SiC:B 1.4 0.008 I yes [21]
SiC:Al 1.5 0.04 II yes [21]
Binary alloys
LaB6 0.45 yes [22]
MgB2 39 74 II yes [23]
Nb3Al 18 II yes [2]
Nb3Ge 23.2 37 II yes [24]
NbO 1.38 II yes [25]
NbN 16 II yes [2]
Nb3Sn 18.3 30 II yes [26]
NbTi 10 15 II yes [2]
YB6 8.4 II yes [27][28][29]
TiN 5.6 yes [30]
ZrN 10 yes [31]
ZrB12 6.0 I yes [29]

References[edit]

  1. ^ Cochran, John; Mapother, D. (1958). "Superconducting Transition in Aluminum". Physical Review 111: 132. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132. 
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Matthias, B.; Geballe, T.; Compton, V. (1963). "Superconductivity". Reviews of Modern Physics 35: 1. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1. 
  3. ^ a b c d e f g h i j k l m n o p q r s Eisenstein, Julian (1954). "Superconducting Elements". Reviews of Modern Physics 26 (3): 277. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277. 
  4. ^ a b c d Efthimios Kaxiras (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7. 
  5. ^ a b c d R. D. Fowler et al. (1965). "Superconductivity of Protactinium". Phys. Rev. Lett. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860. 
  6. ^ Daunt, J.; Smith, T. (1952). "Superconductivity of Rhenium". Physical Review 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309. 
  7. ^ a b A. E. Lita et al. (2001). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity 15 (2): 3528. doi:10.1109/TASC.2005.849033. 
  8. ^ a b Rachi, Takeshi; Kumashiro, Ryotaro; Fukuoka, Hiroshi; Yamanaka, Shoji; Tanigaki, Katsumi (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials (free download) 7: S88. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.02.012. 
  9. ^ a b c d e f g Emery, Nicolas; Hérold, Claire; Marêché, Jean-François; Lagrange, Philippe (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials (free download) 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. 
  10. ^ a b c d e f I.T Belash et al.; Zharikov, O.V; Palnichenko, A.V (1990). "Superconductivity of GIC with Li, Na and K". Synthetic Metals 34: 455. doi:10.1016/0379-6779(89)90424-4. 
  11. ^ K. Tanigaki T. W. Ebbesen S. Saito J. Mizuki J. S. Tsai Y. Kubo & S. Kuroshima; Ebbesen; Saito; Mizuki; Tsai (1991). "Superconductivity at 33 K in CsxRbyC60". Nature 352 (6332): 222–223. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0. 
  12. ^ Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science 256 (5060): 1190–1. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215. 
  13. ^ Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in Rb_{x}C_{60}". Physical Review Letters 66 (21): 2830–2832. Bibcode:1991PhRvL..66.2830R. doi:10.1103/PhysRevLett.66.2830. PMID 10043627. 
  14. ^ E. Ekimov et al. "Superconductivity in diamond" Nature 428 (2004) 542 (Superconducting diamond)
  15. ^ Ekimov, Evgeny A; Sidorov, Vladimir A; Zoteev, Andrey V; Lebed, Yury B; Thompson, Joe D; Stishov, Sergey M (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials (free download) 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. 
  16. ^ Takano, Y; Takenouchi, T; Ishii, S; Ueda, S; Okutsu, T; Sakaguchi, I; Umezawa, H; Kawarada, H; Tachiki, M (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027. 
  17. ^ "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11. 
  18. ^ Inushima, Takashi (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials (free download) 7: S112. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.05.009. 
  19. ^ Makise, Kazumasa; Kokubo, Nobuhito; Takada, Satoshi; Yamaguti, Takashi; Ogura, Syunsuke; Yamada, Kazumasa; Shinozaki, Bunjyu; Yano, Koki; Inoue, Kazuyoshi; Nakamura, Hiroaki (2008). "Superconductivity in transparent zinc-doped In2O3films having low carrier density". Science and Technology of Advanced Materials (free download) 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. 
  20. ^ E. Bustarret et al. Nature 444 (2006) 465
  21. ^ a b Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials (free download) 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. 
  22. ^ G. Schell, H. Winter, H. Rietschel, and F. Gompf (1982). "Electronic structure and superconductivity in metal hexaborides". Phys. Rev. B 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589. 
  23. ^ Nagamatsu, Jun; Nakagawa, Norimasa; Muranaka, Takahiro; Zenitani, Yuji; Akimitsu, Jun (2001). "Superconductivity at 39 K in magnesium diboride". Nature 410 (6824): 63–4. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039. 
  24. ^ Oya, Gin-ichiro; E. J. Saur (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics 34 (5–6): 569–583. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941. 
  25. ^ Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068. 
  26. ^ Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review 95 (6): 1435–1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435. 
  27. ^ Z. Fisk et al.; Schmidt, P.H.; Longinotti, L.D. (1976). "Growth of YB6 single crystals". Mater. Res. Bull. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3. 
  28. ^ P. Szabo et al.; Kačmarčík, Jozef; Samuely, Peter; Girovský, Ján; Gabáni, Slavomir; Flachbart, Karol; Mori, Takao (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C. 460–462: 626. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135. 
  29. ^ a b M. I. Tsindlekht et al.; Genkin, V.; Leviev, G.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M.; Shitsevalova, N. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Phys. Rev. B 78 (2): 024522. arXiv:0707.2211. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522. 
  30. ^ Hugh O. Pierson (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5. 
  31. ^ Lengauer, Walter (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means ofTc measurements". Surface and Interface Analysis 15 (6): 377. doi:10.1002/sia.740150606. 

See also[edit]