Jump to content

Magma (algebra)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rschwieb (talk | contribs) at 18:48, 9 April 2012 (moved template up, propped open relevant section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In abstract algebra, a magma (or groupoid; not to be confused with groupoids in category theory) is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation . A binary operation is closed by definition, but no other axioms are imposed on the operation.

The term magma for this kind of structure was introduced by Nicolas Bourbaki. The term groupoid is an older, but still commonly used alternative which was introduced by Øystein Ore.

Definition

A magma is a set matched with an operation "" that sends any two elements to another element . The symbol "" is a general placeholder for a properly defined operation. To qualify as a magma, the set and operation must satisfy the following requirement (known as the magma axiom):

For all , in , the result of the operation is also in .

And in mathematical notation:

Etymology

In French, the word "magma" has multiple common meanings, one of them being "jumble". It is likely that the French Bourbaki group referred to sets with well-defined binary operations as magmas with the "jumble" definition in mind.

Types of magmas

Magmas are not often studied as such; instead there are several different kinds of magmas, depending on what axioms one might require of the operation. Commonly studied types of magmas include

Note that both divisibility and invertibility imply
the existence of the cancellation property.

Morphism of magmas

A morphism of magmas is a function mapping magma to magma , that preserves the binary operation:

where and denote the binary operation on and respectively.

Combinatorics and parentheses

For the general, non-associative case, the magma operation may be repeatedly iterated. To denote pairings, parentheses are used. The resulting string consists of symbols denoting elements of the magma, and balanced sets of parenthesis. The set of all possible strings of balanced parenthesis is called the Dyck language. The total number of different ways of writing applications of the magma operator is given by the Catalan number . Thus, for example, , which is just the statement that and are the only two ways of pairing three elements of a magma with two operations.

A shorthand is often used to reduce the number of parentheses. This is accomplished by using juxtaposition in place of the operation. For example, if the magma operation is , then abbreviates . Further abbreviations are possible by inserting spaces, for example by writing in place of . Of course, for more complex expressions the use of parenthesis turns out to be inevitable. A way to avoid completely the use of parentheses is prefix notation.

Free magma

A free magma on a set is the "most general possible" magma generated by the set (that is there are no relations or axioms imposed on the generators; see free object). It can be described, in terms familiar in computer science, as the magma of binary trees with leaves labeled by elements of . The operation is that of joining trees at the root. It therefore has a foundational role in syntax.

A free magma has the universal property such that, if is a function from the set to any magma , then there is a unique extension of to a morphism of magmas

See also: free semigroup, free group, Hall set

Classification by properties

Group-like structures
Closure Associative Identity Cancellation Commutative
Partial magma Unneeded Unneeded Unneeded Unneeded Unneeded
Semigroupoid Unneeded Required Unneeded Unneeded Unneeded
Small category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Commutative Groupoid Unneeded Required Required Required Required
Magma Required Unneeded Unneeded Unneeded Unneeded
Commutative magma Required Unneeded Unneeded Unneeded Required
Quasigroup Required Unneeded Unneeded Required Unneeded
Commutative quasigroup Required Unneeded Unneeded Required Required
Associative quasigroup Required Required Unneeded Required Unneeded
Commutative-and-associative quasigroup Required Required Unneeded Required Required
Unital magma Required Unneeded Required Unneeded Unneeded
Commutative unital magma Required Unneeded Required Unneeded Required
Loop Required Unneeded Required Required Unneeded
Commutative loop Required Unneeded Required Required Required
Semigroup Required Required Unneeded Unneeded Unneeded
Commutative semigroup Required Required Unneeded Unneeded Required
Monoid Required Required Required Unneeded Unneeded
Commutative monoid Required Required Required Unneeded Required
Group Required Required Required Required Unneeded
Abelian group Required Required Required Required Required

A magma (S, *) is called

  • unital if it has an identity element,
  • medial if it satisfies the identity xy * uz = xu * yz (i.e. (x * y) * (u * z) = (x * u) * (y * z) for all x, y, u, z in S),
  • left semimedial if it satisfies the identity xx * yz = xy * xz,
  • right semimedial if it satisfies the identity yz * xx = yx * zx,
  • semimedial if it is both left and right semimedial,
  • left distributive if it satisfies the identity x * yz = xy * xz,
  • right distributive if it satisfies the identity yz * x = yx * zx,
  • autodistributive if it is both left and right distributive,
  • commutative if it satisfies the identity xy = yx,
  • idempotent if it satisfies the identity xx = x,
  • unipotent if it satisfies the identity xx = yy,
  • zeropotent if it satisfies the identity xx * y = yy * x = xx,
  • alternative if it satisfies the identities xx * y = x * xy and x * yy = xy * y,
  • power-associative if the submagma generated by any element is associative,
  • left-cancellative if for all x, y, and z, xy = xz implies y = z
  • right-cancellative if for all x, y, and z, yx = zx implies y = z
  • cancellative if it is both right-cancellative and left-cancellative
  • a semigroup if it satisfies the identity x * yz = xy * z (associativity),
  • a semigroup with left zeros if there are elements x for which the identity x = xy holds,
  • a semigroup with right zeros if there are elements x for which the identity x = yx holds,
  • a semigroup with zero multiplication or a null semigroup if it satisfies the identity xy = uv, for all x,y,u and v
  • a left unar if it satisfies the identity xy = xz,
  • a right unar if it satisfies the identity yx = zx,
  • trimedial if any triple of its (not necessarily distinct) elements generates a medial submagma,
  • entropic if it is a homomorphic image of a medial cancellation magma.

If is instead a partial operation, then S is called a partial magma.

Generalizations

See n-ary group.

See also

References

  • M. Hazewinkel (2001) [1994], "Magma", Encyclopedia of Mathematics, EMS Press
  • M. Hazewinkel (2001) [1994], "Free magma", Encyclopedia of Mathematics, EMS Press
  • Weisstein, Eric W. "Groupoid". MathWorld.