Jump to content

Overhead line crossing

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Serols (talk | contribs) at 17:28, 16 May 2022 (Reverted edits by 198.188.7.94 (talk) (HG) (3.4.10)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Overhead powerline crossing
A crossing tower 330 kV, Ukraine
Typeoverhead power line
First production 20th century

An overhead line crossing is the crossing of an obstacle—such as a traffic route, a river, a valley or a strait—by an overhead power line. The style of crossing depends on the local conditions and regulations at the time the power line is constructed. Overhead line crossings can sometimes require extensive construction and can also have operational issues. In such cases, those in charge of construction should consider whether a crossing of the obstacle would be better accomplished by an underground or submarine cable.

Crossings of roads and railway lines

Overhead line crossings of roads, railway lines, and small- and medium-sized watercourses do not normally require special construction. However, in the first years of overhead line building a scaffold under the line was required, when a railway line or a road was crossed. Later in Germany and some other countries on each end of a powerline crossing of a state-operated railway a dead-end tower was required, which can still be seen on some old power lines. For overhead line crossings of motorways the pylons must be rebuilt before they wear out, because these demand additional maintenance. If local conditions are appropriate, an overhead line can be implemented by way of a valley bridge. For example, the Koersch valley bridge near Esslingen, Germany carries the 110 kV, three-phase line of the EnBW AG with 2 circuits. Because of the danger of short circuits from falling objects, undercrossings are typically avoided.

Crossings of overhead lines at state borders

380 kV-powerline crossing the national border between Bavaria, Germany and the Czech Republic near Waidhaus. The pylon in the foreground stands in Bavaria and the others are in the Czech Republic

There is frequently an anchor pylon on each side of the border, particularly if the lines on either side of the border are operated by different companies. This setup reduces maintenance work, which would otherwise require direct coordination of workers on both sides of the border, and avoids possible authority problems associated with border crossings as much as possible.

Crossings of other overhead lines

At crossings of overhead lines by other overhead lines, the two lines must be kept at the necessary safety distances between the lines and the ground. As a rule, the line with the lower voltage passes under the line with higher voltage. Construction workers try to plan these crossings in such a way that their construction is as economical as possible. This is usually done by leaving unchanged the line that is crossed, if possible. Undercrossings of existing lines are often constructed in proximity to the line's pylons, since this can often be accomplished without raising the existing pylons and while keeping the necessary safety distances between the ground and the other line.

In the course of undercrossings the pylon picture is frequently changed, and because of its small height it is preferable to create an arrangement with conductors in one level. Sometimes at such crossings there can be problems because of the maximum pylon height allowed for flight safety reasons. If it is not possible at a given location for the pylons of the upper line to be built at a necessary height, the line running below it will be rebuilt on smaller pylons or replaced with an underground cable.

A unique[citation needed] undercrossing of two powerlines can be found north of Kincardine at Scotland at 56°5'17"N 3°43'11"W. Here crosses the powerline Kincardine-Tealing two other lines. One of the two circuits of Kincardine-Tealing powerline crosses these lines on two small pylons and the other circuit via an underground cable.

Special crossings from overhead lines of other overhead lines

There are some crossings between two overhead powerlines, which are unique, either as both lines are of special type or the unique way of implementation

Coordinates Line 1 Line 2 Reason of unity
47°02′48″N 100°05′49″W / 47.04667°N 100.09694°W / 47.04667; -100.09694 (CU crosses Square Butte) CU (Coal Creek Power Station - Rockford, Minnesota) Square Butte (Center, North Dakota – neighborhood of Adolph in Hermantown, Minnesota) only crossing of 2 HVDC powerlines in North America
27°22′36″N 78°52′44″E / 27.37667°N 78.87889°E / 27.37667; 78.87889 (HVDC Ballia-Bhiwadi crosses HVDC Rihand-Dadri) HVDC Ballia-Bhiwadi ( Ballia - Bhiwadi) HVDC Rihand-Dadri ( Rihand - Dadri) crossing of 2 HVDC powerlines
23°19′47″N 112°09′21″E / 23.32972°N 112.15583°E / 23.32972; 112.15583 (HVDC Tian–Guang crosses HVDC Guizhou-Guangdong I) HVDC Tian–Guang ( Tianshengqiao - Beijiao) HVDC Guizhou-Guangdong I ( Anshun - Zhaoqing) crossing of 2 HVDC powerlines
30°55′55″N 114°18′23″E / 30.93194°N 114.30639°E / 30.93194; 114.30639 (HVDC Gezhouba - Shanghai ( new) crosses HVDC Three Gorges — Shanghai) HVDC Gezhouba - Shanghai ( new) ( Gezhouba - Nan Qiao) HVDC Three Gorges — Shanghai ( Yidu - Shanghai) crossing of 2 HVDC powerlines
30°53′40″N 114°10′52″E / 30.89444°N 114.18111°E / 30.89444; 114.18111 (HVDC Gezhouba - Shanghai ( old) crosses HVDC Three Gorges — Shanghai) HVDC Gezhouba - Shanghai ( old) ( Gezhouba - Nan Qiao) HVDC Three Gorges — Shanghai ( Yidu - Shanghai) crossing of 2 HVDC powerlines
30°53′45″N 114°10′10″E / 30.89583°N 114.16944°E / 30.89583; 114.16944 (HVDC Gezhouba - Shanghai ( new) crosses HVDC Gezhouba - Shanghai ( old)) HVDC Gezhouba - Shanghai ( new) ( Gezhouba - Nan Qiao) HVDC Gezhouba - Shanghai ( old) ( Gezhouba - Nan Qiao) crossing of 2 HVDC powerlines
30°48′25″N 120°31′49″E / 30.80694°N 120.53028°E / 30.80694; 120.53028 (HVDC Gezhouba - Shanghai crosses HVDC Xiangjiaba-Shanghai) HVDC Gezhouba - Shanghai ( Gezhouba - Nan Qiao) HVDC Xiangjiaba-Shanghai ( Fulong - Fenxia) crossing of 2 HVDC powerlines
30°56′38″N 121°21′59″E / 30.94389°N 121.36639°E / 30.94389; 121.36639 (HVDC Gezhouba - Shanghai crosses HVDC Xiangjiaba-Shanghai) HVDC Gezhouba - Shanghai ( Gezhouba - Nan Qiao) HVDC Xiangjiaba-Shanghai ( Fulong - Fenxia) crossing of 2 HVDC powerlines
23°33′54″N 111°48′59″E / 23.56500°N 111.81639°E / 23.56500; 111.81639 (HVDC Yunnan–Guangdong crosses HVDC Guizhou-Guangdong I) HVDC Yunnan–Guangdong ( Yunnan - Zengcheng) HVDC Guizhou-Guangdong I ( Anshun - Zhaoqing) crossing of 2 HVDC powerlines
30°14′0″N 111°54′21″E / 30.23333°N 111.90583°E / 30.23333; 111.90583 (HVDC Xiangjiaba-Shanghai crosses HVDC Three Gorges-Guangdong) HVDC Xiangjiaba-Shanghai ( Fulong - Fenxia) HVDC Three Gorges-Guangdong ( Jingzhou - Huizhou) crossing of 2 HVDC powerlines
29°52′46″N 111°49′45″E / 29.87944°N 111.82917°E / 29.87944; 111.82917 (HVDC Xiangjiaba-Shanghai crosses HVDC Three Gorges - Guangdong) HVDC Xiangjiaba-Shanghai ( Fulong - Fenxia) HVDC Three Gorges-Guangdong ( Jingzhou - Huizhou) crossing of 2 HVDC powerlines
60°28′45″N 17°14′11″E / 60.47917°N 17.23639°E / 60.47917; 17.23639 (Fenno-Skan 2 crosses traction current power line Tierp-Gävle) Fenno–Skan 2 (Finnbole - Rauma) Tierp-Gävle only crossing of HVDC overhead line with single phase AC line in the world
56°21′37″N 94°36′36″W / 56.36028°N 94.61000°W / 56.36028; -94.61000 (Nelson River Bipole 2 crosses electrode line of Nelson River Bipole 1) Nelson River Bipole 2 electrode line of Nelson River Bipole 1 crossing of HVDC and electrode line of another scheme
30°45′25″N 112°05′43″E / 30.75694°N 112.09528°E / 30.75694; 112.09528 (Electrode line of HVDC Hubei - Shanghai crosses HVDC Three Gorges – Changzhou) HVDC Three Gorges – Changzhou electrode line of HVDC Hubei - Shanghai crossing of HVDC and electrode line of another scheme
30°54′25″N 121°07′53″E / 30.90694°N 121.13139°E / 30.90694; 121.13139 (Electrode line of HVDC Xiangjiaba-Shanghai crosses HVDC Gezhouba-Shanghai) HVDC Gezhouba-Shanghai electrode line of HVDC Xiangjiaba-Shanghai crossing of HVDC and electrode line of another scheme
30°37′34″N 111°55′28″E / 30.62611°N 111.92444°E / 30.62611; 111.92444 (HVDC Three Gorges-Changzhou crosses electrode line of HVDC Hubei—Shanghai) HVDC Three Gorges-Changzhou electrode line of HVDC Hubei—Shanghai crossing of HVDC and electrode line of another scheme
30°38′10″N 111°56′02″E / 30.63611°N 111.93389°E / 30.63611; 111.93389 (HVDC Gezhouba–Shanghai crosses electrode line of HVDC Hubei—Shanghai) HVDC Gezhouba–Shanghai electrode line of HVDC Hubei—Shanghai crossing of HVDC and electrode line of another scheme
30°38′10″N 111°56′02″E / 30.63611°N 111.93389°E / 30.63611; 111.93389 (HVDC Gezhouba–Shanghai crosses electrode line of HVDC Three Gorges-Changzhou) HVDC Gezhouba–Shanghai electrode line of HVDC Three Gorges-Changzhou crossing of HVDC and electrode line of another scheme
23°44′55″N 113°20′18″E / 23.74861°N 113.33833°E / 23.74861; 113.33833 (HVDC Yunnan–Guangdong crosses electrode line of HVDC Guizhou-Guangdong II) HVDC Yunnan–Guangdong electrode line of HVDC Guizhou-Guangdong II crossing of HVDC and electrode line of another scheme
21°45′5″N 48°31′58″E / 21.75139°N 48.53278°E / 21.75139; 48.53278 (HVDC Rio Madeira I crosses electrode line of HVDC Rio Madeira II) HVDC Rio Madeira I electrode line of HVDC Rio Madeira II crossing of HVDC and electrode line of another scheme
50°05′30″N 97°26′12″W / 50.09167°N 97.43667°W / 50.09167; -97.43667 (Nelson River Bipole 1 & 2 cross electrode line of Nelson River Bipole 2) Nelson River Bipole 1 & 2 electrode line of Nelson River Bipole 2 crossing of HVDC and its electrode line and electrode line of another scheme
50°10′04″N 97°24′50″W / 50.16778°N 97.41389°W / 50.16778; -97.41389 (electrode line of Nelson River Bipole 1 crosses electrode line of Nelson River Bipole 2) electrode line of Nelson River Bipole 1 electrode line of Nelson River Bipole 2 electrode line crosses electrode line of other HVDC
21°45′03″N 48°31′58″W / 21.75083°N 48.53278°W / 21.75083; -48.53278 (electrode line of HVDC Rio Madeira I crosses electrode line of HVDC Rio Madeira II) electrode line of HVDC Rio Madeira I electrode line of HVDC Rio Madeira II electrode line crosses electrode line of other HVDC
56°21′15″N 94°37′08″W / 56.35417°N 94.61889°W / 56.35417; -94.61889 (Nelson River Bipole 1 & 2 cross electrode line of Nelson River Bipole 1) Nelson River Bipole 1 & 2 electrode line of Nelson River Bipole 1 crossing of HVDC and its electrode line and electrode line of another scheme
23°44′29″S 47°16′43″W / 23.74139°S 47.27861°W / -23.74139; -47.27861 (HVDC Itaipu,Bipole South cross electrode lines of HVDC Itaipu) HVDC Itaipu, Bipole South electrode lines of HVDC Itaipu ( Bipole South & North) crossing of HVDC and its electrode line and electrode line of another scheme
23°41′48″S 47°22′17″W / 23.69667°S 47.37139°W / -23.69667; -47.37139 (HVDC Itaipu,Bipole North cross electrode lines of HVDC Itaipu) HVDC Itaipu, Bipole North electrode lines of HVDC Itaipu ( Bipole South & North) crossing of HVDC and its electrode line and electrode line of another scheme
45°35′48″N 71°50′11″W / 45.59667°N 71.83639°W / 45.59667; -71.83639 (electrode line of HVDC Quebec - New England crosses electrode line of HVDC Quebec - New England) electrode line of Quebec – New England Transmission electrode line of Quebec – New England Transmission crossing of two electrode lines belonging to the same HVDC-scheme
45°36′20″N 71°51′03″W / 45.60556°N 71.85083°W / 45.60556; -71.85083 (electrode line of HVDC Quebec - New England crosses electrode line of HVDC Quebec - New England) electrode line of Quebec – New England Transmission electrode line of Quebec – New England Transmission crossing of two electrode lines belonging to the same HVDC-scheme
49°03′37″N 123°04′33″W / 49.06028°N 123.07583°W / 49.06028; -123.07583 (HVDC Vancouver Island crosses its return line) HVDC Vancouver Island (Delta - Duncan) electrode line of HVDC Vancouver Island (Delta - Duncan) crossing of HVDC and its return line
48°44′1″N 38°43′26″E / 48.73361°N 38.72389°E / 48.73361; 38.72389 (HVDC Volgograd-Donbass crosses its electrode line) HVDC Volgograd-Donbass (Mikhailkovkaya - Volgograd) electrode line of HVDC Volgograd-Donbass (Mikhailkovkaya - Smile) crossing of HVDC and its electrode line
56°26′42″N 94°11′03″W / 56.44500°N 94.18417°W / 56.44500; -94.18417 (Nelson River Bipole 2 crosses its electrode line) Nelson River Bipole 2 electrode line of Nelson River Bipole 2 crossing of HVDC and its electrode line
56°30′01″N 94°08′41″W / 56.50028°N 94.14472°W / 56.50028; -94.14472 (Nelson River Bipole 2 crosses its electrode line) Nelson River Bipole 2 electrode line of Nelson River Bipole 2 crossing of HVDC and its electrode line
25°51′21″S 28°22′37″E / 25.85583°S 28.37694°E / -25.85583; 28.37694 (HVDC Cahora Bassa crosses its electrode line) HVDC Cahora Bassa (Apollo - Songo) electrode line of HVDC Cahora Bassa (Apollo - Glastonbury Ridge) crossing of HVDC and its electrode line
15°42′23″S 32°51′19″E / 15.70639°S 32.85528°E / -15.70639; 32.85528 (HVDC Cahora Bassa, Pole 1 crosses its electrode line) HVDC Cahora Bassa (Apollo - Songo) electrode line of HVDC Cahora Bassa, Pole 1 ( Songo - Tete) crossing of HVDC and its electrode line
15°42′23″S 32°51′19″E / 15.70639°S 32.85528°E / -15.70639; 32.85528 (HVDC Cahora Bassa, Pole 1 crosses electrode line of Pole 2) HVDC Cahora Bassa electrode line of HVDC Cahora Bassa, Pole 2 ( Songo - Tete) crossing of HVDC pole with electrode line of other pole
45°34′13″N 71°52′03″W / 45.57028°N 71.86750°W / 45.57028; -71.86750 (HVDC Quebec - New England crosses its electrode line) Quebec – New England Transmission electrode line of Quebec – New England Transmission crossing of HVDC and its electrode line
45°33′25″N 71°56′16″W / 45.55694°N 71.93778°W / 45.55694; -71.93778 (HVDC Quebec - New England crosses its electrode line) Quebec – New England Transmission electrode line of Quebec – New England Transmission crossing of HVDC and its electrode line
26°17′03″N 105°50′31″E / 26.28417°N 105.84194°E / 26.28417; 105.84194 (HVDC Guizhou-Guangdong I crosses its electrode line) HVDC Guizhou-Guangdong I electrode line of HVDC Guizhou-Guangdong I crossing of HVDC and its electrode line
28°32′36″N 104°26′34″E / 28.54333°N 104.44278°E / 28.54333; 104.44278 (HVDC Xiangjiaba–Shanghai crosses its electrode line) HVDC Xiangjiaba–Shanghai electrode line of HVDC Xiangjiaba–Shanghai crossing of HVDC and its electrode line
23°44′34″N 113°20′49″E / 23.74278°N 113.34694°E / 23.74278; 113.34694 (HVDC Yunnan–Guangdong crosses its electrode line) HVDC Yunnan–Guangdong electrode line of HVDC Yunnan–Guangdong crossing of HVDC and its electrode line
08°55′03″S 63°57′20″W / 8.91750°S 63.95556°W / -8.91750; -63.95556 (HVDC Rio Madeira II crosses its electrode line) HVDC Rio Madeira II electrode line of HVDC Rio Madeira II crossing of HVDC and its electrode line
19°08′21″N 81°23′53″E / 19.13917°N 81.39806°E / 19.13917; 81.39806 (HVDC Sileru-Barsoor crosses its electrode line) HVDC Sileru-Barsoor electrode line of HVDC Sileru-Barsoor crossing of HVDC and its electrode line
50°28′55″N 9°40′52″E / 50.48194°N 9.68111°E / 50.48194; 9.68111 (Crossing point of traction current powerlines Flieden-Bebra and Fulda-Gemünden) Flieden-Bebra Fulda-Gemünden crossing of 2 single phase AC power lines
51°01′59″N 9°34′31″E / 51.03306°N 9.57528°E / 51.03306; 9.57528 (Crossing point of traction current powerlines Bebra-Borken and Fulda-Körle) Bebra-Borken Fulda-Körle crossing of 2 single phase AC power lines
48°56′40″N 8°48′18″E / 48.94444°N 8.80500°E / 48.94444; 8.80500 (Crossing point of traction current powerlines Karlsruhe-Mühlacker and Vaihingen-Graben/Neudorf) Karlsruhe-Mühlacker Vaihingen-Graben/Neudorf crossing of 2 single phase AC power lines
50°39′15″N 7°19′28″E / 50.65417°N 7.32444°E / 50.65417; 7.32444 (Crossing point of traction current powerlines Orscheid-Köln and Orscheid-Montabaur) Orscheid-Köln Orscheid-Montabaur crossing of 2 single phase AC power lines
49°25′38″N 8°34′9″E / 49.42722°N 8.56917°E / 49.42722; 8.56917 (Crossing point of traction current powerlines Mannheim-Neckarelz and Mannheim-Wiesental) Mannheim-Neckarelz Mannheim-Wiesental crossing of 2 single phase AC power lines
47°20′09″N 13°11′27″E / 47.33583°N 13.19083°E / 47.33583; 13.19083 (Crossing point of traction current powerlines Sankt Johann im Pongau-Bruck/Fusch and Sankt Johann im Pongau-Mallnitz) Sankt Johann im Pongau-Bruck/Fusch Sankt Johann im Pongau-Selzthal crossing of 2 single phase AC power lines
47°20′01″N 13°11′17″E / 47.33361°N 13.18806°E / 47.33361; 13.18806 (Crossing point of traction current powerlines Sankt Johann im Pongau-Uttendorf and Sankt Johann im Pongau-Mallnitz) Sankt Johann im Pongau-Uttendorf Sankt Johann im Pongau-Mallnitz crossing of 2 single phase AC power lines
47°17′47″N 13°04′24″E / 47.29639°N 13.07333°E / 47.29639; 13.07333 (Crossing point of traction current powerlines Sankt Johann im Pongau-Bruck/Fusch and Sankt Johann im Pongau-Mallnitz) Sankt Johann im Pongau-Bruck/Fusch Sankt Johann im Pongau-Mallnitz crossing of 2 single phase AC power lines
47°15′46″N 12°33′59″E / 47.26278°N 12.56639°E / 47.26278; 12.56639 (Crossing point of traction current powerlines Sankt Johann im Pongau-Schneiderau and Bruck/Fusch-Uttendorf) Sankt Johann im Pongau-Schneiderau Bruck/Fusch-Uttendorf crossing of 2 single phase AC power lines
47°15′45″N 12°33′59″E / 47.26250°N 12.56639°E / 47.26250; 12.56639 (Crossing point of traction current powerlines Sankt Johann im Pongau-Schneiderau and Uttendorf-Kitzbühl) Sankt Johann im Pongau-Schneiderau Uttendorf-Kitzbühl crossing of 2 single phase AC power lines
47°15′44″N 12°33′59″E / 47.26222°N 12.56639°E / 47.26222; 12.56639 (Crossing point of traction current powerlines Sankt Johann im Pongau-Schneiderau and Uttendorf-Enzingerboden) Sankt Johann im Pongau-Schneiderau Uttendorf-Enzingerboden crossing of 2 single phase AC power lines
47°15′45″N 12°33′55″E / 47.26250°N 12.56528°E / 47.26250; 12.56528 (Crossing point of traction current powerlines Bruck/Fusch-Enzingerboden and Uttendorf-Kitzbühl) Bruck/Fusch-Enzingerboden Uttendorf-Kitzbühl crossing of 2 single phase AC power lines
47°11′49″N 12°36′28″E / 47.19694°N 12.60778°E / 47.19694; 12.60778 (Crossing point of traction current powerlines Uttendorf-Enzingerboden, Schneiderau Branch and Schneiderau-Enzingerboden) Uttendorf-Enzingerboden, Schneiderau Branch Schneiderau-Enzingerboden crossing of 2 single phase AC power lines
47°10′39″N 12°37′34″E / 47.17750°N 12.62611°E / 47.17750; 12.62611 (Crossing point of traction current powerlines Uttendorf-Enzingerboden and Schneiderau-Enzingerboden) Uttendorf-Enzingerboden Schneiderau-Enzingerboden crossing of 2 single phase AC power lines
47°11′38″N 12°37′00″E / 47.19389°N 12.61667°E / 47.19389; 12.61667 (Crossing point of traction current powerlines Uttendorf-Enzingerboden and Schneiderau-Enzingerboden) Uttendorf-Enzingerboden Schneiderau-Enzingerboden crossing of 2 single phase AC power lines
46°33′45″N 6°31′45″E / 46.56250°N 6.52917°E / 46.56250; 6.52917 (Crossing point of traction current powerlines Bussigny-Croy and Romanel-Les Tuileries) Bussigny-Croy Romanel-Les Tuileries crossing of 2 single phase AC power lines
46°32′09″N 6°48′11″E / 46.53583°N 6.80306°E / 46.53583; 6.80306 (Crossing point of traction current powerlines Puidoux-Kerzers and Bussigny-Chamoson) Puidoux-Kerzers Bussigny-Chamoson crossing of 2 single phase AC power lines
46°22′07″N 6°55′23″E / 46.36861°N 6.92306°E / 46.36861; 6.92306 (Crossing point of traction current powerlines Puidoux-Vernayaz and Bussigny-Chamoson) Puidoux-Vernayaz Bussigny-Chamoson crossing of 2 single phase AC power lines
46°10′26″N 7°01′50″E / 46.17389°N 7.03056°E / 46.17389; 7.03056 (Crossing point of traction current powerlines Puidoux-Vernayaz and Bussigny-Chamoson) Puidoux-Vernayaz Bussigny-Chamoson crossing of 2 single phase AC power lines
46°08′48″N 7°02′16″E / 46.14667°N 7.03778°E / 46.14667; 7.03778 (Crossing point of traction current powerlines Puidoux-Vernayaz and Vernayaz Branch) Puidoux-Vernayaz Vernayaz Branch crossing of 2 single phase AC power lines
46°06′52″N 7°05′55″E / 46.11444°N 7.09861°E / 46.11444; 7.09861 (Crossing point of traction current powerlines Vernayaz-Brig and Bussigny-Chamoson) Vernayaz-Brig Bussigny-Chamoson crossing of 2 single phase AC power lines
56°2′26″N 3°53′20″W / 56.04056°N 3.88889°W / 56.04056; -3.88889 (Powerline Longannet Power Station - Glasgow,Bishopbridge crosses powerline Longannet Power Station - Glasgow,Carmyle) Longannet Power Station - Glasgow,Carmyle Longannet Power Station - Glasgow,Bishopbridge Powerline Longannet Power Station - Glasgow,Bishopbridge crosses powerline Longannet Power Station - Glasgow,Carmyle as underground cable
56°5′17″N 3°43′11″W / 56.08806°N 3.71972°W / 56.08806; -3.71972 (Powerline Kincardine - Tealing crosses powerlines Longannet Power Station - Glasgow,Carmyle, Longannet Power Station - Glasgow,Bishopbridge) Longannet Power Station - Glasgow,Carmyle, Longannet Power Station - Glasgow,Bishopbridge Kincardine - Tealing one circuit of double-circuit line crosses two powerlines as underground cable

Overhead line crossings of aerial tramways

Overhead lines should cross the route of an aerial tramway only above it, if at all.

The necessary protection distances from overhead lines to the ropes of an aerial tramway are subject to regulations concerning the construction of aerial tramways and overhead lines. In the case of an undercrossing of an aerial tramway, the maximum safety distances between the overhead line and the floor of the aerial tramway cab must be followed absolutely.

In principle, over- and undercrossings of aerial tramways are completely regulated. However, frequently at the range of the crossing section, special precautionary measures are taken. Thus, at overhead line crossings at which the overhead line runs above the rope of the aerial tramway, two catch ropes are occasionally installed to prevent the conductor from falling off the rope of the tramway in case a pylon or insulator were to break. Alternatively, auxiliary cross-bars can be installed on the pylons of the overhead line under the conductors, which prevent the conductor cables from falling in case of an insulator failure on the aerial tramway. Occasionally, the span field of the line over the aerial ropeway can be scaffolded with a rigid construction along its whole length, or at least for the span which crosses the aerial tramway.

At crossings at which the aerial tramway runs above the power line, the line is frequently installed on special masts in the crossing range, which scaffold the line in the area of the aerial tramway crossing. Such a measure is not necessary according to power line regulations, but it is often done because, in case of aerial tramway failure, it is possible to rescue people from the tram without switching off the overhead line. Such constructions may be seen at 110 kV power line crossings of the Penkenbahn at Mayrhofen, the Patscherkofelbahn at Innsbruck and south of Zermatt.

Overhead line crossings of broad rivers and straits

The two masts of the high level crossing of the River Severn estuary between England and Wales, with the Severn Bridge behind. These masts are 1.6km (1 mile) apart: a further 1.2-km line crosses the River Wye estuary to the left.

Overhead line crossings of broad rivers and of straits, if the terrain on both sides is relatively even, frequently consist of four pylons: two particularly substantial anchor pylons for bracing the conductors of the crossing section, and two tall carrying masts to keep the line high over the water. These pylons have broader cross-bars and greater distances between the cross-bars than the other pylons of the line, in order to prevent the conductor cables from striking against each other during strong winds. In contrast to normal pylons, the two carrying masts at both ends of the crossing are frequently equipped with flight safety lamps, and have stairways for easy access to the top.

anchor portal of the River Usk crossing

Overhead line crossings of rivers and straits with spans of over 2 km are frequently prohibitively expensive to build and operate; because of the danger of wind-induced oscillatory movements of the conductor cables, it is necessary either to install very large leader distances or to mount insulators between the conductors in the area of the span. Bundle conductors, which are used for almost all extra-high voltage lines, are more susceptible to oscillations from wind forces than single conductors. Therefore, single conductors must be used for the crossing section, which means the crossing section of the power line determines the maximum transmittable power.

Further, one cannot build pylons arbitrarily high at either end of the crossing section, and there is a usually a considerable minimum height because of ships crossing under the line, so there is often a high mechanical tension in the conductors at long spans. This tension requires conductors made largely of steel, which have a worse electrical conductivity than the common overhead line conductors consisting of copper, Aldrey or aluminum-encased steel, and also limits the amount of transmittable electrical power. For this reason, for crossings with a span width of more than approximately 2 km, those in charge of construction should consider laying an underwater cable as the more practicable solution.

pylon in Lake Schwerin

Alternatively, it might be possible to erect one or more pylons in the water to be crossed. Such crossings can be seen occasionally in North America. They are, however, only used when it is more economical and practical to do so than to lay a cable underwater, such as when the water is not very deep and no large passage heights are needed for vessels. Also, such construction can be very problematic as far as getting legal permission to build, because pylons standing in the water are likely to be considered dangerous obstacles for ships, especially in foggy conditions.

In some cases on bridges small crossing a wider waterway pylons or crossbars for the conductors can be mounted. Such a solution, which may lead to safety problems at bridge maintenance, was for example realized at the Danish Storstrøm Bridge.

It is quite likely that overhead line crossings of broad waters can be replaced with underwater cables. The overhead line crossing the Strait of Messina — which, with a span of 3646 meters, was one of the longest overhead line crossings in the world, with 200-meter pylons among the highest in the world — was replaced by a submarine cable, because of its small maximum transmittable electrical power.

Overhead line crossing of valleys

Overhead line crossings of valleys consist of two anchor pylons, one at either end of the valley. If the topography of the valley is suitable, these do not need to be very high. In very wide valleys, it is better to use a pylon for each phase in order to achieve sufficient distance between the conductors. In these cases there is frequently a further anchor pylon behind the crossing, used in order to realize the angle change of the conductor cables behind these. The problems associated with large spans also exist in these cases, but these can be easily and economically ameliorated, if the topography does not require high crossing pylons, by using a separate pylon for each conductor.

Structures

A crossing pylon is used for crossing over a body of water or a valley. Due to the long span, crossing pylons across rivers and sea straits are frequently taller than standard pylons. They may have marking lamps, and unlike standard pylons, often have stairways for easy access to the top. In many cases, their height makes them ideal for carrying radio antennas and transmitting equipment.

Crossing pylons for valleys, depending on the local topography, are not necessarily tall, but the distance between the conducting cables must be sufficient to prevent high winds knocking the conductors into one another; these pylons have wide crossbars to prevent this. For very long spans each phase has a separate pylon, particularly if the pylons are short.

Special crossing pylons are often used where aerial tramways cross power lines. These pylons are designed with integral scaffolding so that the tramway cars can be reached without touching a live power line. This enables passengers to be rescued from the tramway if it fails without cutting the power from the power line. Such installations can be found, for example, south of Zermatt, Switzerland; at the Patscherkofelbahn near Innsbruck, Austria; and at the Penkenbahn in Mayrhofen, Austria.

See also

References

This article draws heavily on the corresponding article in the German-language Wikipedia.