Resolvable space

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In topology, a topological space is said to be resolvable if it is expressible as the union of two disjoint dense subsets. For instance, the real numbers form a resolvable topological space because the rationals and irrationals are disjoint dense subsets. A topological space that is not resolvable is termed irresolvable.

Properties[edit]

See also[edit]

References[edit]

  • A.B. Kharazishvili (2006), Strange functions in real analysis, Chapman & Hall/CRC monographs and surveys in pure and applied mathematics 272, CRC Press, p. 74, ISBN 1-58488-582-3 
  • Miroslav Hušek; J. van Mill (2002), Recent progress in general topology, Recent Progress in General Topology 2, Elsevier, p. 21, ISBN 0-444-50980-1