Return-to-zero

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other uses, see Return to Zero (disambiguation).
"RZI" redirects here. For other uses, see RZI (disambiguation).
The binary signal is encoded using rectangular pulse amplitude modulation with polar return-to-zero code

Return-to-zero (RZ) describes a line code used in telecommunications signals in which the signal drops (returns) to zero between each pulse. This takes place even if a number of consecutive 0s or 1s occur in the signal. The signal is self-clocking. This means that a separate clock does not need to be sent alongside the signal, but suffers from using twice the bandwidth to achieve the same data-rate as compared to non-return-to-zero format.

The "zero" between each bit is a neutral or rest condition, such as a zero amplitude in pulse amplitude modulation (PAM), zero phase shift in phase-shift keying (PSK), or mid-frequency in frequency-shift keying (FSK). That "zero" condition is typically halfway between the significant condition representing a 1 bit and the other significant condition representing a 0 bit.

Although return-to-zero (RZ) contains a provision for synchronization, it still has a DC component resulting in “baseline wander” during long strings of 0 or 1 bits, just like the line code non-return-to-zero.

Return-to-zero in optical communication[edit]

Return to zero, inverted[edit]

Return-to-zero, inverted (RZI) is a method of mapping for transmission. The two-level RZI signal has a pulse (shorter than a clock cycle) if the binary signal is 0, and no pulse if the binary signal is 1. It is used (with a pulse 3/16 of a bit long) by the IrDA serial infrared (SIR) physical layer specification. Required bandwidth for this kind of modulation is: BW = R(data rate)

See also[edit]

Other line codes that have 3 states: