User:V1scerale1shman1asis

From Wikipedia, the free encyclopedia

Protective immunity[edit]

Immunity to Leishmania is determined by the interplay of white blood cells, cytokines, immune complexes, and genetic and environmental factors. [1] Protective immunity develops either after successful treatment of VL (cured) or after asymptomatic infections that resolve without development of VL (asymptomatic). [2] [3] Both types of immunity are characterized by cell-mediated immunity (CMI), including skin test positivity, proliferation, and interleukin 2 (IL-2), interferon gamma (IFN-γ), and interleukin 12 (IL-12) secretion by peripheral blood mononuclear cells (PBMC) in response to leishmania antigens. [4] [5] [6][7] [8] T cells isolated from both cured and asymptomatic PBMC activate autologous macrophages to kill intracellular amastigotes. [9] IFN-γ activates macrophages to kill intracellular parasites so its role in VL has been studied extensively and IFN-γ production is often used as a marker of protective immunity. Cured PBMC generally secrete less IFN-γ and and more interleukin 10 (IL-10) in response to leishmania antigens than asymptomatic PBMC.[10] IL-12 is important in the development and maintenance of Type 1 T helper cell responses and protective immunity so its role in VL has also been studied. Addition of IL-12 to some VL PBMC increases proliferation and IFN-γ secretion in response to leishmania antigens and anti-IL-12 inhibits proliferation and IFN-γ secretion by some cured PBMC. [11] [12] [8] [13] Other cytokines also appear to be important in immunity to Leishmania but their roles are not as well characterized.

Leishmania antigen stimulation of PBMC from cured patients show a mixed T helper cell and regulatory T cell response. [14] Both CD4+ and CD8+ T cells contributed to IFN-γ production. [15] [16] Studies of leishmania antigen specific T cell clones from cured patient PBMC confirm that cured patients have a mixed T cell response that involves both CD4+ helper T cells and CD4+ and CD8+ regulatory T cells. [17] [18] [19] Two studies of asymptomatic T cell clones show that most have Type 1 profiles and secrete more IFN-γ than T cell clones from cured patients. Neither study revealed the presence of Type 2 or regulatory T cells. [10] [18] Some clones secreted soluble factors that caused the death of CD8+ regulatory T cells but not CD4+ T cells from VL patients, which might explain the strong protective immunity of asymptomatic patients. [12]

Non-protective immunity[edit]

VL patients are unable to clear their infections because they lack CMI. This anergy may be limited to leishmania antigens or extend to mitogens and other antigens as the disease progresses. [20] In addition to skin test negativity, VL patient PBMC do not proliferate or secrete IL-2 or IFN-γ in response to leishmania antigens. [4] [21] [5] Memory T cells maybe depleted in VL patient PBMC. [22] [23] Since IL-10 is known to suppress innate and acquired immunity and prevent IFN-γ from activating macrophages, its role in VL has been studied extensively and elevated IL-10 production is often used as a marker of non-protective immunity in VL. Elevated levels of IL-10 in the plasma, infected tissues, and PBMC of VL patients accompany the anergy of VL. [10] [24] [25] [26] [22] [27] PKDL patients also have elevated IL-10 levels.[28] VL patients with the highest IL-10 levels are more likely to be unresponsive to treatment and progress to PKDL. [29] [30] PBMC secretion of IL-10 without the addition of leishmania antigen (endogenous) is inversely correlated with antigen specific IFN-γ secretion but leishmania antigen specific IL-10 and IFN-γ secretion are not correlated, suggesting that endogenous secretion is more important in pathology. [19] Addition of anti-IL-10 increases proliferation and IFN-γ secretion by PBMC from some patients. [7][12] Both CD4+ and CD8+ T cells have been shown to contribute to IL-10 secretion by VL PBMC. [31] [15] The high level of immune complexes characteristic of VL have also been shown to increase IL-10 levels. [32]

Regulatory T and B cells in visceral leishmaniasis[edit]

The CMI that kills Leishmania also produces inflammation. If the inflammation is excessive, it can cause tissue damage. The role of regulatory T and regulatory B cells is to suppress CMI enough to prevent tissue damage. [33] [34] However, an excessive regulatory response can prevent clearance of Leishmania and could explain the anergy of VL, poor response to drug treatment, development of PKDL, and relapses. A role for regulatory cells in VL has long been suspected. [35] A variety of regulatory T and B cells have been implicated in VL, including Type 1 T helper cells that secrete IL-10 in addition to IFN-γ, natural T reg, Tr1, CD8+ T reg, and B reg. All of these lymphocytes act, at least in part, by secreting IL-10 and other suppressive cytokines.

CD4+ T regs are present at increased frequency in the bone marrow of VL patients, are one source of IL-10, and proliferate in response to leishmania antigen. [30] Levels of FoxP3 mRNA were also up-regulated in lesional tissue from PKDL patients.[28] However, T regs are not elevated in spleen cells from VL patients nor does depletion of T regs increase leishmania antigen specific IFN-γ secretion [36] The highest levels of IL-10 mRNA in spleen cells is in CD8+ and other non-FoxP3+ T cells. [16]. White blood cell CD8+ T cells from VL patients have elevated IL-10 levels. [31] There is a 9.6 fold increase in IL-10 expressing CD8+ T cells among PBMC lymphocytes from PKDL patients. [28] In the one study of T cell clones from VL patients, the clones isolated from VL PBMC were 100% CD8+. [10] When mixed with self PBMC one or three years after successful treatment the CD8+ T cells decreased leishmania antigen specific proliferation and IFN-γ secretion and increased IL-10 secretion. Depletion of CD8+ T cells from VL PBMC stopped endogenous IL-10 secretion but increased leishmania antigen specific IL-10 secretion, suggesting that CD8+ regulatory T cells are responsible for endogenous IL-10 secretion. [19] CD4+ clones could only be isolated from VL PBMC after CD8+ T cell depletion. The CD4+ clones had little effect on IL-10 secretion but decreased IFN-γ secretion when mixed with self PBMC collected after successful treatment.

Regulatory B cells are known to favor development of regulatory T cells and suppress development of Type 1 T helper cells by producing IL-10 and other down-regulatory cytokines. [34] IL-10 levels are elevated in B cells from VL PBMC. [31] A study of dogs with naturally acquired VL showed that the percentage of regulatory B cells increased three-fold during VL. [37] Depletion of B cells increased CD4+ T cell proliferation and IFN-γ secretion but decreased IL-10 secretion. Blocking IL-10 or programmed cell death receptors on B cells increased leishmania antigen specific T cell proliferation and IFN-γ secretion. Co-culture of T cells with B cells decreased the percentage of CD4+ T cell proliferation and IFN-γ secretion four-fold.

  1. ^ Saha S, Mondal S, Banerjee, et al. (2006). "Immune Responses in Kala-azar". Indian J Med Res. 123 (3): 245–66. PMID 16778308. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  2. ^ Manson-Bahr P (1961). "Immunity in Kala-azar". Trans. R. Soc. Trop. Med. Hyg. 55 (6): 550–55. doi:10.1016/0035-9203(61)90078-5. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  3. ^ Manson-Bahr P (1967). "Cryptic Infections of Humans in an Endemic Kala-azar Area". E. African Med. J. 44 (4): 177–82. ISSN 0012-835X.
  4. ^ a b Carvalho E, Teixeira R, Johnson W Jr (1981). "Cell Mediated Immunity in American Visceral Leishmaniasis: Reversible Immunosuppression during Acute Infection". Infect. Immun. 33 (2): 498–502. PMC 350726. PMID 7275314. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  5. ^ a b Carvalho E, Badaro R, Reed S, et al. (1985). "Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis". J. Clin. Invest. 76 (6): 2066–2069. doi:10.1172/JCI112209. PMC 424308. PMID 3935667. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  6. ^ Carvalho E, Barral A, Pedral-Sampaio D, et al. (1992). "Immunologic Markers of Clinical Evolution in Children Recently Infected with Leishmania donovani chagasi". J. Infect. Dis. 165 (3): 535–40. PMID 1347057. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  7. ^ a b Carvalho E, Bacellar O, Brownell C, et al. (1994). "Restoration of IFN-gamma Production and Lymphocyte Proliferation in Visceral Leishmaniasis". J. Immunol. 15 (12): 5949–56. PMID 8207220. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  8. ^ a b Ghalib H, Whittle J, Kubin M, et al. (1995). "IL-12 Enhances Th-1 Type Responses in Human "Leishmania donovani" Infections". J. Immunol. 154 (9): 4623–9. PMID 7722314. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  9. ^ Holaday B, Pompeu M, Evans T, et al. (1993). "Correlates of Leishmania-specific Immunity in the Clinical Spectrum of Infection with Leishmania chagasi". J. Infect. Dis. 167 (2): 411–17. doi:10.1093/infdis/167.2.411. PMID 8421174. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  10. ^ a b c d Holaday B, Pompeu M, Jeronimo S, et al. (1993). "Potential Role for Interleukin-10 in the Immunosuppression Associated with Kala-azar". J. Clin. Invest. 92 (6): 2626–32. doi:10.1172/JCI116878. PMC 288459. PMID 8254019. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  11. ^ Bacellar O, Brodskyn C, Guerreiro J, et al. (1996). "Interleukin-12 Restores Interferon-γ Production and Cytotoxic Responses in Visceral Leishmaniasis" (PDF). J. Infect. Dis. 173 (6): 1515–8. doi:10.1093/infdis/173.6.1515. PMID 8648233. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  12. ^ a b c Holaday B (1999). "Immunotherapy for Visceral Leishmaniasis: Ability of Factors Produced during Anti-leishmania Responses of Skin Test Positive Adults to Inhibit Peripheral Blood Mononuclear Cell Activities Associated with Visceral Leishmaniasis". Mem. Inst. Oswaldo Cruz. 94 (1): 55–66. doi:10.1590/S0074-02761999000100013. PMID 10029912. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  13. ^ Bacellar O, D'oliveira A Jr, Jerônimo S, et al. (2000). "IL-10 and IL-12 Are the Main Regulatory Cytokines in Visceral Leishmaniasis". Cytokine. 12 (8): 1228–31. doi:10.1006/cyto.2000.0694. PMID 10930301. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  14. ^ Kemp K, Kemp M, Kharazmi A, et al. (1999). "Leishmania-specific T Cells Expressing Interferon-gamma (IFN-γ) and IL-10 upon Activation Are Expanded in Individuals Cured of Visceral Leishmaniasis". Clin. Exp. Immunol. 116 (3): 500–4. doi:10.1046/j.1365-2249.1999.00918.x. PMC 1905302. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  15. ^ a b Saha S, Mondal S, Ravindran R, et al. (2007). "IL-10- and TGF-B-Mediated Susceptibility in Kala-azar and Post-kala-azar Dermal Leishmaniasis: The Significance of Amphotericin B in the Control of Leishmania donovani Infection in India". J. Immunol. 179 (8): 5592–5603. doi:10.4049/jimmunol.179.8.5592. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  16. ^ a b Gautam S, Kumar R, Singh N, et al. (2014). "CD8 T Cell Exhaustion in Human Visceral Leishmaniasis". J. Infect. Dis. 209 (2): 290–99. doi:10.1093/infdis/jit401. PMC 3873784. PMID 23922369. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  17. ^ Kemp M, Kurtzhals J, Bendtzen K, et al. (1993). "Leishmania donovani-reactive TH1-like T Cell Clones from Individuals Who Have Recovered from Visceral Leishmaniasis". Infect. Immun. 61 (3): 1069–73. PMC 302840. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  18. ^ a b Mary C, Auriault V, Faugere B, et al. (1999). "Control of Leishmania infantum Infection Is Associated with CD8+ and Gamma-interferon and Interleukin-5 Producing CD4+ Antigen-specific T Cells". Infect. Immun. 67 (11): 5559–66. PMC 96926. PMID 10531200.
  19. ^ a b c Holaday B (2000). "Role of CD8+ T Cells in Endogenous Interleukin-10 Secretion Associated with Visceral Leishmaniasis". Mem. Inst. Oswaldo Cruz. 95 (2): 217–20. doi:10.1590/s0074-02762000000200013. PMID 10733741. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  20. ^ Ho M, Koech D, Iha D, et al. (1983). "Immune Suppression in Kenyan Visceral Leishmaniasis". Clin. Exp. Immunol. 51 (2): 207–14. PMC 1536899. PMID 6839538. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  21. ^ Haldar J, Ghose S, Saha K, et al. (1983). "Cell-mediated Immune Response in Indian Kala-azar and Post-kala-azar Dermal Leishmaniasis". Infect. Immun. 42 (2): 702–7. PMC 264486. PMID 6642649. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  22. ^ a b Cillari E, Vitale G, Arcoleo F, et al. (1995). "In Vivo and In Vitro Cytokine and Mononuclear Cell Subsets in Sicilian Patients with Visceral Leishmaniasis". Cytokine. 7 (7): 740–5. doi:10.1006/cyto.1995.0088. PMID 8580385. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  23. ^ Hailu A, van Baarle D, Knol G, et al. (2005). "T Cell and Cytokine Profiles in Human Visceral Leishmaniasis during Active and Asymptomatic or Sub-clinical Infection with Leishmania donovani". Clin. Immunol. 117 (2): 182–91. doi:10.1016/j.clim.2005.06.015. PMID 16125466. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  24. ^ Karp C, el-Safi S, Wynn T, et al. (1993). "In vivo Cytokine Profiles in Patients with Kala-azar. Marked Elevation of Both Interleukin-10 and Interferon-gamma". J. Clin. Invest. 91 (4): 1664–8. doi:10.1172/JCI116372. PMC 288142. PMID 8097208. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  25. ^ Ghalib H, Piuvezam M, Skeiky Y, et al. (1993). "Interleukin-10 Production Correlates with Pathology in Human "Leishmania donovani" Infections". J Clin Invest. 92 (1): 324–9. doi:10.1172/JCI116570. PMC 293600. PMID 8326000. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  26. ^ Medeiros I, Castelo A, Salomão R (1998). "Presence of Circulating Levels of Interferon-gamma, Interleukin-10 and Tumor Necrosis Factor-alpha in Patients with Visceral Leishmaniasis". Rev Inst Med Trop Sao Paulo. 40 (1): 31–4. PMID 9713135. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  27. ^ Peruhype-Magalhaes V, Martins-Filho O, Prata A, et al. (2005). "Immune Response in Human Visceral Leishmaniasis: Analysis of the Correlation between Innate Immunity Cytokine Profile and Disease Outcome". Scand. J. Immunol. 62 (5): 487–495. doi:10.1111/j.1365-3083.2005.01686.x. PMID 16305646. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  28. ^ a b c Ganguly S, Mukhopadhyay D, Das N, et al. (2010). "Enhanced Lesional FoxP3 Expression and Peripheral Anergic Lymphocytes Indicate a Role for Regulatory T Cells in Indian Post-Kala-azar Dermal Leishmaniasis". J. Invest. Dermatol. 130 (4): 1013–22. doi:10.1038/jid.2009.393. PMID 20032994. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  29. ^ Gasim S, Elhassan A, Khalil E, et al. (1998). "High Levels of Plasma IL-10 and Expression of IL-10 by Keratinocytes during Visceral Leishmaniasis Predict Subsequent Development of Post-kala-azar Dermal Leishmanniasis". Clin. Exp. Immunol. 111 (1): 64–9. PMC 1904865. PMID 9472662. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  30. ^ a b Rai A, Chandreshwar P, Singh A, et al. (2012). "Regulatory T Cells Suppress T Cell Activation at the Pathologic Site in Human Visceral Leishmaniasis". PLOS One. 7 (2): e31551. doi:10.1371/journal.pone.0031551. PMC 3275558. PMID 22347492.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ a b c Peruhype-Magalhaes V, Martins-Filho O, Prata A, et al. (2006). "Mixed Inflammatory/Regulatory Cytokine Profile Marked by Simultaneous Raise of Interferon-g and Interleukin-10 and Low Frequency of Tumor Necrosis Factor-a Monocytes Are Hallmarks of Active Human Visceral Leishmaniasis Due to Leishmania chagasi Infection". Clin. Exp. Immunol. 146 (1): 124–32. doi:10.1111/j.1365-2249.2006.03171.x. PMC 1809731. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  32. ^ {{cite journal | vauthors = Elshafie A, Ahlin E, Mathsson L, et al | title = Circulating Immune Complexes (IC) and IC-induced Levels of GM-CSF Are Increased in Sudanese Patients with Acute Visceral Leishmania donovani Infection Undergoing Sodium Stibogluconate Treatment: Implications for Disease Pathogenesis | url = http://www.jimmunol.org/content/178/8/5383 |journal = J. Immunol. | year = 2007 | volume = 178 | issue = 8 | pages = 5383-89 | pmid = | doi = 10.4049/jimmunol.178.8.5383
  33. ^ Belkaid Y (2007). "Regulatory T Cells and Infection: a Dangerous Necessity" (PDF). Nature Rev Immunol. 7 (11): 875–88. doi:10.1038/nri2189. PMID 17948021. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  34. ^ a b Rosser E, Mauri C (2015). "Regulatory B Cells: Origin, Phenotype, and Function". Immunity. 42 (4): 607–12. doi:10.1016/j.immuni.2015.04.005. PMID 25902480. {{cite journal}}: Cite has empty unknown parameters: |1= and |2= (help)
  35. ^ Carvalho E, Bacellar O, Barral A, et al. (1989). "Antigen-specific Immunosuppression in Visceral Leishmaniasis Is Cell Mediated". J. Clin. Invest. 83 (3): 860–4. doi:10.1172/JCI113969. PMC 303759. PMID 2522103. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  36. ^ Nylen S, Maurya R, Eidsmo L, et al. (2007). "Splenic Accumulation of IL-10 mRNA T Cells Distinct from CD4+ CD25+ (FoxP3+) Regulatory T Cells in Human Visceral Leishmaniasis". J Exp Med. 204 (4): 805–17. doi:10.1084/jem.20061141. PMC 2118563. PMID 17389235. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  37. ^ Schaut R, Lamb I, Toepp A, et al. (2016). "Regulatory IgDhi B Cells Suppress T Cell Function Via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis". J Immunol. 196 (10): 4100–9. doi:10.4049/jimmunol.1502678. PMC 4868652. PMID 27076677. {{cite journal}}: Cite has empty unknown parameter: |1= (help)