Jump to content

Dyadic product: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
update merge banner to tensor product
 
Line 1: Line 1:
#REDIRECT [[Dyadics]]
{{mergeto|tensor product|date=August 2012|discuss=Wikipedia talk:WikiProject Mathematics#Suggested merges with dyadic product and outer product, into tensor product...}}


In [[mathematics]], in particular [[multilinear algebra]], the '''dyadic product'''

:<math>\mathbb{P} = \mathbf{u}\otimes\mathbf{v}</math>

of two [[Vector (geometric)|vector]]s, <math>\mathbf{u}</math> and <math>\mathbf{v}</math>, each having the same dimension, is the [[tensor product]] of the vectors and results in a [[tensor]] of [[Tensor order#Tensor rank|order]] two and [[Tensor#Tensor rank|rank]] one. It is also called [[outer product]].

== Components ==
With respect to a chosen [[Basis (linear algebra)|basis]] <math>\{\mathbf{e}_i\}</math>, the components <math>P_{ij}</math> of the dyadic product <math>\mathbb{P} = \mathbf{u} \otimes \mathbf{v}</math> may be defined by

:<math>\displaystyle P_{ij} = u_i v_j </math> ,

where

:<math>\mathbf{u} = \sum_i u_i \mathbf{e}_i</math> ,
:<math>\mathbf{v} = \sum_j v_j \mathbf{e}_j</math> ,

and

:<math>\mathbb{P} = \sum_{i,j} P_{ij} \mathbf{e}_i \otimes \mathbf{e}_j</math> .

==Matrix representation==
The dyadic product can be simply represented as the square [[Matrix (mathematics)|matrix]] obtained by [[matrix multiplication|multiplying]] <math>\mathbf{u}</math> as a [[column vector]] by <math>\mathbf{v}</math> as a [[row vector]]. For example,

:<math>
\mathbf{u} \otimes \mathbf{v}
\rightarrow
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \end{bmatrix}
\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}
=
\begin{bmatrix}
u_1v_1 & u_1v_2 & u_1v_3 \\
u_2v_1 & u_2v_2 & u_2v_3 \\
u_3v_1 & u_3v_2 & u_3v_3
\end{bmatrix} ,
</math>
where the arrow indicates that this is only one particular representation of the dyadic product, referring to a particular [[basis (linear algebra)|basis]]. In this representation, the dyadic product is a special case of the [[Kronecker product]].

==Identities==
The following identities are a direct consequence of the definition of the dyadic product<ref>See Spencer (1992), page 19.</ref>:
:<math>
\begin{align}
(\alpha \mathbf{u}) \otimes \mathbf{v} &= \mathbf{u} \otimes (\alpha \mathbf{v}) = \alpha (\mathbf{u} \otimes \mathbf{v}), \\
\mathbf{u} \otimes (\mathbf{v} + \mathbf{w}) &= \mathbf{u} \otimes \mathbf{v} + \mathbf{u} \otimes \mathbf{w}, \\
(\mathbf{u} + \mathbf{v}) \otimes \mathbf{w} &= \mathbf{u} \otimes \mathbf{w} + \mathbf{v} \otimes \mathbf{w}, \\
(\mathbf{u} \otimes \mathbf{v}) \cdot \mathbf{w} &= \mathbf{u}\; (\mathbf{v} \cdot \mathbf{w}), \\
\mathbf{u} \cdot (\mathbf{v} \otimes \mathbf{w}) &= (\mathbf{u} \cdot \mathbf{v})\; \mathbf{w}.
\end{align}
</math>

==See also==
* [[Dyadics]]
* [[Dyadic tensor]]
* [[Tensor product]]
* [[Kronecker product]]
* [[Outer product]]

==Notes==
{{reflist}}

==References==
*{{cite book | title=Continuum Mechanics | author=A.J.M. Spencer | year=1992 | publisher=Dover Publications | isbn=0-486-43594-6 }}.

[[Category:Tensors]]

[[de:Dyadisches Produkt]]
[[pl:Iloczyn diadyczny]]
[[ru:Умножение двухэлементного тензора]]
[[sq:Produkti diadik]]
[[uk:Множення двохелементного тензора]]
[[zh:并矢积]]

Latest revision as of 23:20, 23 August 2012

Redirect to: