Jump to content

Kinetic momentum: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Zueignung (talk | contribs)
merge into Momentum
Line 1: Line 1:
#REDIRECT [[momentum]]
{{mergeto|Momentum|discuss=Talk:Momentum#Merger proposal|date=July 2012}}
{{hatnote|[[Potential momentum]] redirects here. See the main article for [[momentum]] in general.}}

In [[physics]], in particular [[electromagnetism]], the '''kinetic momentum''' is the [[momentum]]

:<math>\mathbf{p} = m\mathbf{v}</math>

of a [[charged particle]] of mass ''m'' and [[velocity]] '''v''' moving in an [[electromagnetic field]].

==Non-relativistic dynamics==

===Lagrangian formulation===

Kinetic momentum is distinct from the ''[[canonical momentum]]'' encountered in [[Lagrangian mechanics]]. The Lagrangian, ''L'', of a free charged particle is
:<math>L=\frac{m}{2}\mathbf{\dot{r}}\cdot\mathbf{\dot{r}}+e\mathbf{A}\cdot\mathbf{\dot{r}}-e\phi,</math>
where ''m'' is the particle's mass, ''e'' is its charge, <math>\mathbf{\dot{r}} = \mathbf{v}</math> is its [[velocity]], and φ and '''A''' are, respectively, the [[electric potential|scalar potential]] and the [[magnetic vector potential|vector potential]] of the electromagnetic field. The canonical momentum is defined as
:<math>\mathbf{P} = \frac{\partial L}{\partial \mathbf{\dot{r}}} = m\mathbf{\dot{r}} +e\mathbf{A},</math>
and hence the kinetic momentum is related to the canonical momentum by<ref name=Lerner>{{cite book|editor-last=Lerner|editor-first=Rita G.|title=Encyclopedia of physics|year=2005|publisher=Wiley-VCH-Verl.|location=Weinheim|isbn=978-3527405541|edition=3rd, completely revised. and enlarged |coauthors=Trigg, George L.}}</ref>
:<math>\mathbf{P} = \mathbf{p} + e\mathbf{A}.</math>

The kinetic momentum ''m'''''v''' is not always the result this derivative. See also: [[momentum#Electromagnetism|Momentum in electromagnetism (section)]]

=== Hamiltonian formulation===

The classical [[Hamiltonian]] ''H'' for a particle in any field equals the total energy of the system: the [[kinetic energy]] ''T'' = '''p'''<sup>2</sup>/2''m'' plus the [[potential energy]] ''V'':

:<math>H = T + V = \frac{\mathbf{p}^2}{2m} + V, </math>

where '''p'''<sup>2</sup> = '''p·p''' (see [[dot product]]).

For a particle in an [[electromagnetic field]], the potential energy is ''V'' = ''e''φ, and since the kinetic energy ''T'' always corresponds to the kinetic momentum '''p''', replacing the kinetic momentum by the above equation ('''p'''&nbsp;= '''P'''&nbsp;− ''e'''''A''') leads to the Hamiltonian:

:<math>H = \frac{(\mathbf{P} -e\mathbf{A})^2}{2m} + e\phi. </math>

==Canonical commutation relations==

The kinetic momentum ('''p''' above) satisfies the [[Commutator|commutation relation]]:<ref name=Lerner/>

:<math>\left [ p_j , p_k \right ] = \frac{i\hbar e}{c} \epsilon_{jk\ell } B_\ell</math>

where: ''j, k, l'' are indices labelling vector components, ''B<sub>l</sub>'' is a component of the [[magnetic field]], and ''ε<sub>kjl</sub>'' is the [[permutation tensor]], here in 3-dimensions.

==Relativistic dynamics==

In [[Theory of relativity|relativity]], the [[Lagrangian]] for the particle interacting with the field is

:<math>L = -m\sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2} + e \mathbf{A}(\mathbf{r})\cdot\dot{\mathbf{r}} - e \phi(\mathbf{r}) \,\!</math>

The action is the relativistic [[arclength]] of the path of the particle in [[space time]], minus the potential energy contribution, plus an extra contribution which [[Quantum Mechanics|quantum mechanically]] is an extra [[phase (waves)|phase]] a charged particle gets when it is moving along a vector potential.

The momentum conjugate to '''r''', that is the canonical momentum '''P''', is defined from the variation of the lagrangian:

:<math> \mathbf{P} = \frac{\partial L}{\partial \dot{\mathbf{r}} } = \frac{m\dot{\mathbf{r}}}{\sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}} + e\mathbf{A} \,\!</math>

The kinetic momentum is the relativistic momentum of a particle moving with velocity ''v'' = '''ṙ''', still (''P'' – ''e'''''A'''), so we have:
:<math> \mathbf{P}-e\mathbf{A} = \frac{m\dot{\mathbf{r}}}{\sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}} \,</math>
The Hamiltonian equals total energy (kinetic plus potential), and is the usual relativistic expression for the energy. So in terms of the kinetic momentum:
:<math>H= \mathbf{P}\cdot\dot{\mathbf{r}} - L = {m\over \sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}} + e \phi = \sqrt{(\mathbf{P} -e\mathbf{A})^2 + (mc^2)^2} + e \phi \,</math>

The equations of motion derived by [[calculus of variations|extremizing]] the action (see [[matrix calculus]] for the notation):

:<math> \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} =\frac{\partial L}{\partial \mathbf{r}} = e {\partial \mathbf{A} \over \partial \mathbf{r}}\cdot \dot{\mathbf{r}} - e {\partial \phi \over \partial \mathbf{r} }\,\!</math>

:<math>\mathbf{P} -e\mathbf{A} = \frac{m\dot{\mathbf{r}}}{\sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}}\,</math>

are the same as [[Hamiltonian mechanics|Hamilton's equations of motion]]:

:<math> \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\partial}{\partial \mathbf{p}}\left ( \sqrt{(\mathbf{P}-e\mathbf{A})^2 +(mc^2)^2} + e\phi \right ) \,\!</math>
:<math> \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -{\partial \over \partial \mathbf{r}}\left ( \sqrt{(\mathbf{P}-e\mathbf{A})^2 + (mc^2)^2} + e\phi \right ) \,\!</math>

both are equivalent to the noncanonical form:

:<math> \frac{\mathrm{d}}{\mathrm{d}t}\left ( {m\dot{\mathbf{r}} \over \sqrt{1-\left(\frac{\dot{\mathbf{r}}}{c}\right)^2}} \right ) = e\left ( \bold{E} + \mathbf{v} \times \mathbf{B} \right ) . \,\!</math>

This formula is the [[Lorentz force]], representing the rate at which the EM field adds relativistic momentum to the particle.

==See also==

*[[Momentum]]
*[[Canonical commutation relation]]
*[[Magnetic vector potential]]
*[[Electromagnetic field]]
*[[Hamiltonian]]
*[[Lagrangian]]
*[[Generalized coordinates]]

==References==
{{reflist}}
{{Refbegin}}
*{{cite book|last=Kibble|first=T.W.B.|title=Classical mechanics |edition=2d |year=1973|publisher=McGraw-Hill|location=London|isbn=9780070840188|edition=2nd}} Although concentrates on undergraduate-level classical Newtonian and Lagrangian mechanics, also contains a chapter on potential theory, includes electrodynamic fields: the ''ϕ'' and ''A'' fields and canonical momentum.
*{{cite book|last=Abers|first=Ernest S.|title=Quantum mechanics|year=2004|publisher=Pearson Education Inc.|location=Upper Saddle River, NJ|isbn=0-1314-6100-1}} Focuses on graduate-level quantum mechanics, but also contains similar coverage to the above.
*{{cite book|last=McMahon|first=David|title=Quantum field theory demystified|year=2008|publisher=McGraw-Hill|location=New York, N.Y.|isbn=978-0-07-154382-8|edition=Online-Ausg.}} Again concentrates on under/post-graduate level quantum mechanics, but does provide some exposure to Lagrangian field theory and application to the EM field.
{{Refend}}

{{DEFAULTSORT:Kinetic Momentum}}
[[Category:Special relativity]]

Revision as of 00:20, 7 September 2012

Redirect to: