Jump to content

15 and 290 theorems: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
improved exposition to make it easier for those without all the prerequisites
more references
Line 1: Line 1:
The '''15 theorem''' of [[John H. Conway]] and W. A. Schneeberger ('''Conway–Schneeberger Fifteen Theorem'''), proved in 1993, states that if a [[positive definite]] [[quadratic form]] with [[integer matrix]] represents all [[positive integer]]s up to [[15 (number)|15]], then it represents all positive integers<ref>{{cite book | authorlink=John Horton Conway | last=Conway | first=J.H. | url=http://www.fen.bilkent.edu.tr/~franz/mat/15.pdf | chapter=Universal quadratic forms and the fifteen theorem | title=Quadratic forms and their applications (Dublin, 1999) | pages=23–26 | series=Contemp. Math. | volume=272 | publisher=Amer. Math. Soc. | location=Providence, RI | year=2000 | isbn=0-8218-2779-0 | zbl=0987.11026 }}</ref>. The proof was complicated, and was never published. [[Manjul Bhargava]] found a much simpler proof which was published in 2000<ref> {{cite book | last=Bhargava | first=Manjul | authorlink=Manjul Bhargava | url=http://www.maths.ed.ac.uk/~aar/books/dublin.pdf | chapter=On the Conway–Schneeberger fifteen theorem | title=Quadratic forms and their applications (Dublin, 1999) | pages=27–37 | series=Contemp. Math. | volume=272 | publisher=Amer. Math. Soc. | location=Providence, RI | year=2000 | isbn=0-8218-2779-0 | zbl=0987.11027 }}</ref>.
The '''15 theorem''' or '''Conway–Schneeberger Fifteen Theorem''', proved by [[John H. Conway]] and W. A. Schneeberger in 1993, states that if a [[positive definite]] [[quadratic form]] with [[integer matrix]] represents all [[positive integer]]s up to [[15 (number)|15]], then it represents all positive integers<ref>{{cite book | authorlink=John Horton Conway | last=Conway | first=J.H. | url=http://www.fen.bilkent.edu.tr/~franz/mat/15.pdf | chapter=Universal quadratic forms and the fifteen theorem | title=Quadratic forms and their applications (Dublin, 1999) | pages=23–26 | series=Contemp. Math. | volume=272 | publisher=Amer. Math. Soc. | location=Providence, RI | year=2000 | isbn=0-8218-2779-0 | zbl=0987.11026 }}</ref>. The proof was complicated, and was never published. [[Manjul Bhargava]] found a much simpler proof which was published in 2000<ref> {{cite book | last=Bhargava | first=Manjul | authorlink=Manjul Bhargava | url=http://www.maths.ed.ac.uk/~aar/books/dublin.pdf | chapter=On the Conway–Schneeberger fifteen theorem | title=Quadratic forms and their applications (Dublin, 1999) | pages=27–37 | series=Contemp. Math. | volume=272 | publisher=Amer. Math. Soc. | location=Providence, RI | year=2000 | isbn=0-8218-2779-0 | zbl=0987.11027 }}</ref>.


In 2005 [[Manjul Bhargava]] and Jonathan P. Hanke announced a proof of Conway's conjecture that a similar [[theorem]] holds for [[integral quadratic form|integral]] quadratic forms, with the constant 15 replaced by [[290 (number)|290]]. The proof is to appear in ''Inventiones Mathematicae''.<ref>Bhargava, M., & Hanke, J., [http://www.wordpress.jonhanke.com/wp-content/uploads/2011/09/290-Theorem-preprint.pdf Universal quadratic forms and the 290-theorem]. ''Invent. Math.'', to appear.</ref>
In 2005 [[Manjul Bhargava]] and Jonathan P. Hanke announced a proof of Conway's conjecture that a similar [[theorem]] holds for [[integral quadratic form|integral]] quadratic forms, with the constant 15 replaced by [[290 (number)|290]]. The proof is to appear in ''Inventiones Mathematicae''.<ref>Bhargava, M., & Hanke, J., [http://www.wordpress.jonhanke.com/wp-content/uploads/2011/09/290-Theorem-preprint.pdf Universal quadratic forms and the 290-theorem]. ''Invent. Math.'', to appear.</ref>
Line 30: Line 30:


Bhargava has found analogous criteria for an integral quadratic form to represent all primes (the set {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73} {{OEIS|id=A154363}}) and for such a quadratic form to represent all positive odd integers (the set {1, 3, 5, 7, 11, 15, 33} {{OEIS|id=A116582}}).
Bhargava has found analogous criteria for an integral quadratic form to represent all primes (the set {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73} {{OEIS|id=A154363}}) and for such a quadratic form to represent all positive odd integers (the set {1, 3, 5, 7, 11, 15, 33} {{OEIS|id=A116582}}).

Expository accounts of these result have been written by Hahn <ref>Alexander J. Hahn, [https://math.nd.edu/assets/20630/hahntoulouse.pdf Quadratic Forms over <math>\mathbb{Z}</math> from Diophantus to the 290 Theorem</ref> and Moon <ref>[https://math.stanford.edu/theses/moon.pdf Yong Suk Moon], Universal quadratic forms and the 15-theorem and 290-theorem</ref> (who provides proofs).


==References==
==References==

Revision as of 04:19, 14 August 2014

The 15 theorem or Conway–Schneeberger Fifteen Theorem, proved by John H. Conway and W. A. Schneeberger in 1993, states that if a positive definite quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers[1]. The proof was complicated, and was never published. Manjul Bhargava found a much simpler proof which was published in 2000[2].

In 2005 Manjul Bhargava and Jonathan P. Hanke announced a proof of Conway's conjecture that a similar theorem holds for integral quadratic forms, with the constant 15 replaced by 290. The proof is to appear in Inventiones Mathematicae.[3]

Details

In simple terms, the results are as follows. Suppose is a square matrix with real entries. For any vector with integer components, define

This function is called a quadratic form. We say is positive definite if whenever . If is always an integer, we call the function an integral quadratic form.

We get an integral quadratic form whenever the matrix entries are integers; then is said to have integer matrix. However, will still be an integral quadratic form if the off-diagonal entries are integers divided by 2, while the diagonal entries are integers. For example, x2 + xy + y2 is integral but does not have integral matrix.

A positive integral quadratic form taking all positive integers as values is called universal. The 15 theorem says a quadratic form with integer matrix is universal if it takes the numbers from 1 to 15 as values. A more precise version says that if a positive definite quadratic form with integral matrix takes the values 1, 2, 3, 5, 6, 7, 10, 14, 15 (sequence A030050 in the OEIS) then it takes all positive integers as values. Moreover, for each of these 9 numbers, there is such a quadratic form taking all positive integers except for this number as values.

For example, the quadratic form

is universal because every positive integer can be written as a sum of 4 squares, by Lagrange's four-square theorem. By the 15 theorem, to verify this it is sufficient to check that every positive integer up to 15 is a sum of 4 squares. (This does not give an alternative proof of Lagrange's theorem, because Lagrange's theorem is used in the proof of the 15 theorem.)

On the other hand,

is a positive definite quadratic form with integral matrix that takes as values all positive integers other than 15.

The 290 theorem says a positive definite integral quadratic form is universal if it takes the numbers from 1 to 290 as values. A more precise version states that if an integer valued integral quadratic form represents all the numbers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290 (sequence A030051 in the OEIS) then it represents all positive integers, and for each of these 29 numbers there is such a quadratic form representing all positive integers with the exception of this one number.

Bhargava has found analogous criteria for an integral quadratic form to represent all primes (the set {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73} (sequence A154363 in the OEIS)) and for such a quadratic form to represent all positive odd integers (the set {1, 3, 5, 7, 11, 15, 33} (sequence A116582 in the OEIS)).

Expository accounts of these result have been written by Hahn [4] and Moon [5] (who provides proofs).

References

  1. ^ Conway, J.H. (2000). "Universal quadratic forms and the fifteen theorem". Quadratic forms and their applications (Dublin, 1999) (PDF). Contemp. Math. Vol. 272. Providence, RI: Amer. Math. Soc. pp. 23–26. ISBN 0-8218-2779-0. Zbl 0987.11026.
  2. ^ Bhargava, Manjul (2000). "On the Conway–Schneeberger fifteen theorem". Quadratic forms and their applications (Dublin, 1999) (PDF). Contemp. Math. Vol. 272. Providence, RI: Amer. Math. Soc. pp. 27–37. ISBN 0-8218-2779-0. Zbl 0987.11027.
  3. ^ Bhargava, M., & Hanke, J., Universal quadratic forms and the 290-theorem. Invent. Math., to appear.
  4. ^ Alexander J. Hahn, [https://math.nd.edu/assets/20630/hahntoulouse.pdf Quadratic Forms over from Diophantus to the 290 Theorem
  5. ^ Yong Suk Moon, Universal quadratic forms and the 15-theorem and 290-theorem